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Useful Conversions:

1 erg 10−7 Joules
1 parsec (pc) 3.086× 1016 m

1 radian 206, 265 arcsec
1 year 3.16× 107 s

≃ π × 107 s
Solar Mass M⊙ 1.99× 1030 kg

Solar Radius R⊙ 6.96× 108 m
Solar Luminosity L⊙ 3.90× 1026 J s−1

Solar Absolute Magnitude Mv 4.83
Gravitaional constant G 4.98× 10−15 M−1

⊙ pc3 yr−2

Useful Definitions:

Apparent Magnitude m from flux f m1 −m2 = −2.5 log10
f1
f2

Absolute magnitude M from distance D m−M = 5 log10 DMpc + 25

Convenient Units:
Galaxies Clusters of Galaxies

G 1 1
Length L 1 kpc 1 Mpc
Speed v 1 km/s 100 km/s
Time t (1 kpc)/(1 km/s) (1 Mpc)/(100 km/s)

= 0.97× 109 yr = 0.97× 1010 yr
Mass M (1/G) × 1 kpc × (km/s)2 (1/G) × 1 Mpc × (100 km/s)2

= 2.32× 105 M⊙ = 2.32× 1012 M⊙



1. Galaxies

Galaxies are the basic building blocks of matter in the Universe, though this wasn’t
realized till the 1930s. Compared to our understanding of the physics of stars, galaxies
are still poorly understood, though our knowledge of galaxies is improving significantly
as we speak1.

Galaxies are difficult to understand not only because they are made of three very
different constituents, but also that they are much more than the sum of their parts.
There are stars, the physics of which is relatively better understood, but there’s also
the interstellar medium (gas and dust, which produces stars, and is in turn fed by dying
stars), and dark matter (about which we know very little, except that it’s there). These
three very different kinds of things all interact with each other, and interaction with
other galaxies and the local extragactic environment crucially affects the evolution of
galaxies. Some galaxies (more of them in earlier epochs) have ‘active nuclei’ which can
vastly outshine the starlight, but here we will mostly deal with normal galaxies2.

Dynamical timescales

Consider an isolated cluster of N stars each of mass m, where the average speed of the
stars with respect to the centroid of the cluster is v. One can assume that the average
separation between these stars is roughly half the size D of the system.

The virial theorem (we’ll prove this later) states that for any system bound by
an inverse square force, the time-averaged kinetic energy 〈T 〉 and the time-averaged
potential energy 〈V 〉 satisfy 2〈T 〉 + 〈V 〉 = 0. For the system in question, this implies
that 2× 1

2Nmv2 ≈ G(Nm)2/D, which means

v2 ≃ GNm/D. (1.1)

1. Crossing time: The time taken by a star, moving with the average speed, to cross
from one side of the cluster to the other provides an useful timescale.

tcross =
D

v
≈

(

D3

GNm

)

1

2

.

This is also known as the dynamical timescale of the system.

Example [Crossing times for systems of stars and galaxies] For Globular clusters, assuming
N = 106, D = 20 pc and a mean mass for its stars m = 0.5 M⊙, the crossing time turns out to
be tcross = 2× 106 yr. However, for the core of a cluster of galaxies, where v = 1000 km s−1,
D = 2 Mpc, the crossing time would be tcross ≡ D/v = 2× 1010 yr. Thus globular clusters of
stars are well mixed, whereas clusters of galaxies are necessarily not so. ⊔⊓

1 The standard texts/references are Galaxies in the Universe by Sparke and Gallagher, Galactic
Dynamics by Binney and Tremaine, and Galactic Astronomy by Binney and Merrifield. The Physical
Universe by Shu is more elementary, but very insightful and always repays reading. For those of you
who haven’t taken an astronomy module before, Chapters 12-13 of Shu are essential reading.

2 Those of you who are 4th-year M.Sci. Students will deal with some aspects of active galaxies.
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4 Galaxies

2. Relaxation time: The two-body relaxation time trelax is the time taken for a star’s
velocity to be changed significantly changed from two-body interactions, such that
∆v2 ≃ v2. Most textbooks would have a derivation- it turns out

Trelax ==
1

8N lnN

(Dv)3

(Gm)2
, (1.2)

where N is the total number of stars in the system of size D, and m and v the typical
mass and speed of a star.

A back-of-the-envelope calculation: The v and m dependences of the
relaxation time can be found in a order-of-magnitude calculation. Consider N stars
of massm each in a box of side R, and let these stars be fixed. Then send another star
through this box with speed v. The moving star needs to pass within r0 ≃ Gm/v2

of one of the fixed stars, so that kinetic and two-body potential energies are equal.
In time t the expectation value of the number of stars passing within distance r0 is
πr20vt. Equating this expectation value to unity gives the time, of order

(Rv)3

N(Gm)2
.

The lnN term comes from the fact that relaxation is a cumulative effect from two-

body encounters with all stars. More distant encounters each have less effect, but

there are more of them. So these more distant encounters shortens the relaxation

time by a factor depending weakly on N .

It’s easier to remember Trelax in crossing times. Taking R/bmin ≃ N and then using
equation (1.1) to eliminate R, we get

Trelax

Tcross
≃ N

8 lnN
. (1.3)

Galaxies are ∼< 103Tcross old and have ∼> 106 stars, so stellar encounters have
negligible dynamical effect. In globular clusters, which may have ∼ 106 stars and be
∼ 105 crossing times old, stellar encounters start to become important, and in the cores
of globular clusters two-body relaxation is very important.

Stellar collisions: Another way of looking at this is to imagine that each star
has a “sphere of influence” of radius rs around its centre. We would call an
event an “encounter” if the centres of two stars came closer to each other than
rs. We could define strong encounters to occur when two stars come close
enough such that their mutual potential energy is of the same order as their
kinetic energy, i.e. 1

2mv2 ≈ Gm2/rs, which implies that their separation

r ∼< rs =
2Gm

v2
.

For the solar neighbourhood, where v = 30 km/s, this quantity is about 1 AU.

If the local density of stars is n, and a typical random speed v, then the cylindrical
volume swept out by a single star’s sphere of influence is πr2vts. This volume can
contain just one other star (if it had more, then in the same time interval there would
have been more collisions). Therefore, n(πr2vts) = 1, or,

ts =
1

nπr2sv
=

v3

4πG2m2n
=

v3D3

3G2m2N
,
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for a spherical stellar system of sizeD, whereN = 4
3πR

3n. For the solar neighbourhood,
where v = 30 km/s, n = 0.1 pc−3 and m = 0.5M⊙, ts ∼ 5 × 1015 yr. To calculate the
freqeuncy of actual “collisions”, substitute rs by the radius of a star (about 7×108 m for
the Sun), and one can see why collisions between stars are so infrequent (tcollision ∼ 1019

yr).

From this we can conclude that stars are so compact on the scale of a galaxy that
a stellar system behaves like a collisionless fluid (except in the cores of galaxies and
globular clusters), resembling a plasma in some respects. Gas and dust are collisional.
This leads to two very important differences between stellar and gas dynamics in a
galaxy.

1) Gas tends to settle into disks, but stars don’t.

2) Gravity must be balanced by motion in stellar and gas dynamics, but in equilibrium
gas must follow closed orbits (and in the same sense), but stars in general don’t.
Two streams of stars can go through each other and hardly notice, but two streams
of gas will be shocked (and probably form stars).

Problem 1.1: Prove that if a homogenous sphere of a pressureless fluid with density ρ
is released from rest, it will collapse to a point in time tff = 1/4

√

3π/(2Gρ) (Binney and
Tremaine # 3.4). This is known as the free-fall time for the system.

Types of galaxies

There are three broad categories of galaxies:

Disk galaxies These have masses of 106M⊙ to 1012M⊙. The disks brightness tend
to be roughly exponential, i.e.,

I(R) = I0 exp[−R/R0] (1.4)

I0 is ∼ 102L⊙ pc−2. The scale radius R0 is ≃ 4 kpc for the Milky Way. The visible
component is ≃ 95% stars (dominated by F and G stars for giant spirals), and the rest
dust and gas. The more gas-rich disks have spiral arms, and arms are regions of high
gas density that tend to form stars; clumps of nascent stars are observed as H II regions.
Disk galaxies have bulges which appear to be much the same as small ellipticals. All
disk galaxies seem to be embedded in much larger dark halos; the ratio of total mass to
visible stellar mass is ≃ 5, but we don’t really have a good mass estimate for any disk
galaxy.
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Elliptical galaxies These have masses from 106M⊙ to 1012+M⊙. There are various
functional forms around for fitting the surface brightness, of which the best known is
the de Vaucouleurs model

I(R) = I0 exp
[

−α(R/R0)
1

4

]

. (1.5)

with I0 ∼ 105L⊙ pc−2 for giant ellipticals. (To fit to observations, one typically un-
squashes the ellipses to circles first. Also, the functional forms are are only fitted
to observations over the restricted range in which I(R) is measurable. So don’t be
surprised to see very different looking functional forms being fit to the same data.) The
visible component is almost entirely stars (dominated by K giants for giant ellipticals),
but there appears to be dark matter in a proportion similar to disk galaxies. Ellipticals
of masses ∼< 1011M⊙ rotate as fast as you’d expect from their flattening; giant ellipticals
rotate much slower, and tend to be triaxial—more on this later.

At the small end of ellipticals, we might put the globular clusters, even though
they occur inside galaxies rather than in isolation. These are clusters of masses from
104M⊙ to 106.5M⊙, consisting exclusively of very old stars.

Irregulars Everything else! They tend to have strong emission lines, and their
starlight is dominated by B,A and F types. Basically, they look like they’ve just been
shaken up and are responding by forming stars.

Hubble types On the whole, galaxy classification probably shouldn’t be taken as
seriously as stellar classification, because there isn’t (yet) a clear physical interpretations
of what the gradations mean. But some physical properties do clearly correlate with
the so-called Hubble types, so it’s worth learning about these at least.

Figure 1.1: The tuning fork diagram of Hubble types
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Figure 1.1 shows the Hubble types. Ellipticals go on the left, labelled as En, where
n = 10(1− 〈axis ratio〉). Then the lenticulars or disk galaxies without spiral arms: S0
and SB0. Then spirals with increasingly spaced arms, Sa etc. if unbarred, SBa etc. if
barred.

The left ones are called early types, and the right ones late types. People once
thought this represented an evolutionary sequence, but that’s long been obsolete. (Our
current understanding is that, if anything, galaxies tend to evolve towards early types.)
But the old names are still used.

We never see ellipticals flatter than about E7. The reason (as indicated by sim-
ulations and normal mode analyses) seems to be that a stellar system any flatter is
unstable to buckling, and will eventually settle into something rounder.

Note that bulges get smaller as spiral arms get more widely spaced. Theory for
spiral density waves predicts that the spacing between arms is proportional to the disk’s
mass density.

An an evolutionary picture, you should not take the Hubble tuning-form diagram
seriously. Hubble thought that all galaxies form as ellipticals, hence he called them
”early-types”, and that they transform into ”late-type” spirals. We now know know
that indeed the reverse is true, and the process of this transformation is far from simple.

How galaxies form We can start putting together a general picture now. (The rest
of this paragraph varies from well-accepted to controversial to wildly speculative, so
don’t take it too seriously.) Primordial gas will tend to form rotating disks. Differential
rotation in the disks will cause spiral density waves, enhancing density along spiral
arms and preferentially forming stars. A bulge-less stellar disk is actually unstable
to buckling, and produces a bulge with part of its mass. (That’s what simulations
indicate.) A bulge formed this way will be rotationally supported like the disk that
gave rise to it. Meanwhile the disk will continue to form stars, so disk stars will tend
to be younger than a bulge stars. Disks that have turned almost all their gas into
stars will have stellar disks, but no spiral arms. Now, a disk galaxy can be disrupted
by the gravitational influence of another galaxy. It can be a merger of two or more
galaxies, or the tidal disruption of a single galaxy; both tending to disrupt disks and
produce irregulars with much star formation, then ellipticals. Disruptions of single
galaxies will tend to produce rotationally supported ellipticals; but for mergers the
angular momentum vectors will tend to cancel, producing pressure support. So we
might expect giant ellipticals to be pressure supported. But even a completely gas-
free elliptical will generate gas from its dying stars. This second-generation gas will of
course settle into disks, and there we might see spiral arms all over again. . .And all this
while, dark matter (whatever it is) will be finding gravitational potential wells in the
neighbourhood of galaxies and form haloes around them.

Note, by the way, that all galaxies appear to have some stars ∼ 1010yr old. Ev-
idently galaxies all formed fairly early, though they have merged or been otherwise
disrupted much more recently.



2. Dynamics in a gravitational field

A system of stars behaves like a fluid, but one with unusual properties. In a normal
fluid two-body interactions are crucial to its dynamics, but close encounters between
stars are very rare. Instead the dynamics of a star can be expressed in terms of its
interaction with the mean gravitational field of all the other stars in the system.

Definitions

The gravitational field at a point x, defined as the gravitational force on a unit mass,
is given by

F(x) = G
∑ x

′ − x

|x′ − x|3 ∆m(x′),

= G

∫

x
′ − x

|x′ − x|3 ρ (x′) d3x′,

(2.1)

in the limit of a continuous medium. A more useful quantity is the gravitational po-
tential Φ (x)

Φ (x) = −G

∫

ρ (x′)

|x′ − x| d
3
x
′, (2.2)

Problem 2.1: Show, by differentiating (2.2), that the gravitational field is related to the
potential by

F(x) = −∇Φ(x). (2.3)

From the above expression, it is evident that the gravitational field is conservative.

Circular Speed

An important quantity that is often used in spherically symmetric distributions is the
circular speed vc (r), which is the speed a test particle would have in a circular orbit
of radius r about the origin of the mass distribution. If M (< r) be the mass within
radius r of a spherical distribution, then

v2c (r)

r
= −Fr(r) ≡

dΦ

dr
=

GM (< r)

r2
.

Thus the circular speed is a measure of the mass inside of r.

A related quantity is the escape velocity ve (r), which is the speed required to escape
to r=∞. Equating the kinetic energy with the gravitational energy of a tiny test mass,

ve (r) = [2|Φ(r)|] 12 .

Only when the speed of a star is greater than this value does its (positive) kinetic
energy 1

2mv2 exceed the absolute value of its (negative) potential energy, and the star
can escape from the gravitational field represented by the potential Φ.

8
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Poisson’s equation

Poisson’s equation is one of the most useful equations of stellar dynamics:

∇2Φ(x) = 4πGρ (x). (2.4)

It is the gravitational analogue of Gauss’s law in electrostatics, and can be derived
by taking the divergence of (2.1), and applying the divergence theorem. If you are
interested, a derivation is available in most books on dynamics (e.g. BT §2.1).

Integrating both sides of (2.4) over an arbitrary volume containing mass M , and
applying the divergence theorem, we obtain

∫

∇Φ · d2S = 4πGM,

which can be rephrased as

Theorem [Gauss] The integral of the normal component of ∇Φ over a closed

surface is equal to 4πG times the mass contained within that surface. ⊔⊓

Spherical systems

The most useful results that enable us to calculate the gravitational field and potential
of any spherically symmetric distribution of matter are due to Newton:

Theorem [Newton I] The net gravitational force exerted by a spherical shell of

matter on a particle at a point inside the shell is identically zero. ⊔⊓

Figure 2.1: Proof of Newton’s first theorem.

Figure 2.1 illustrates Newton’s first theorem. Consider the cones originating from the
point P intersecting the spherical uniform shell of matter at distances r1 and r2. The
circles of intersection have areas πr21 and πr22 respectively. If the mass per unit area of
the shell is σ, it is easy to see that the net gravitational force at P due to these two
elements is zero. This argument can be repeated with cones centred at P that intersect
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the rest of the sphere, and one concludes that the particle at P experiences no net force
from the shell.

This implies that the gravitational potential Φ (x) inside the sphere is constant,
since F(x) = −∇Φ(x). The easiest place to evaluate it is at the centre, which is
equidistant from every point on the sphere, which implies

Φ = −GM

R
.

Theorem [Newton II] The gravitational force on a particle that lies outside a

closed spherical shell of matter is the same as it would be if all the shell’s matter

were concentrated into a point at the centre of the shell. ⊔⊓

The proof is not easy, but is easily found in textbooks. These two theorems enable us
to calculate the gravitational potential due to an arbitrary spherically symmetric mass
distribution of density ρ (x), which we can split into two parts: the contribution from
shells with r<x and with r>x:

Φ(x) = −4πG

[

1

x

∫ x

0

ρ (r) r2 dr +

∫ ∞

x

ρ (r) r dr

]

. (2.5)

Of course the gravitational force will have contributions only from the shells with r< |x|.

Problem 2.2: Show that you can arrive at Eq. 2.5 by integrating the following expression
for the potential

∇Φ =
G

r2

∫ r

0

ρ (s) · 4πs2 ds.

Think of the boundary conditions at either extreme of r.

Problem 2.3: Astronauts orbiting an unexplored planet find that (i) the surface of the
planet is precisely spherical; and (ii) the potential exterior to the planetary surface is exactly
Φ = −GM/r. Can they conclude from these observations that the mass distribution in the
interior of the planet is spherically symmetric? If not, can you think of a nonspherical mass
distribution that would reproduce the observations? [BT problem 2.1]
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A few Spherically symmetric examples

Now we can apply the above results to some simple, and useful, cases.

Point mass: For a point mass, the system is analogous to the case of the solar system
and is often called the Keplerian case:

Φ (r) = −GM

r
; vc (r) =

(

GM

r

)
1

2

; ve (r) =

(

2GM

r

)
1

2

. (2.6)

The circular speed declines with radius as vc ∝ r−1/2, which should be the trend far
outside any finite mass distribution.

Homogeneous sphere: If the density ρ inside a sphere is constant, then

M (r) =
4

3
πr3ρ,

and the circular velocity is

vc =

(

4πGρ

3

)
1

2

r.

The circular velocity in this case rises linearly with radius, which means that the angular
velocity ω ≡ v/r is constant. The body in question thus moves like a solid body.

Digression [Rotation curves of spiral galaxies] When the circular velocity of neu-
tral hydrogen gas was measured well outside the visible limits of spiral galaxies by
radioastronomers, it was expected that these velocities would decline in a Keplerian
fashion with distance from the centre. Instead, the “rotation curves” of an over-
whelming majority of spiral galaxies, representing vc (r), were found to be almost
independent of r out to several times the optical radii of these galaxies. ⊔⊓

Figure 2.2:
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Problem 2.4: Assume that the Earth is a sphere of uniform density, through which a
diametric tunnel has been dug, passing through the centre. If a test particle is released from
rest into this tunnel, show that (a) it takes time t = (3π/16Gρ)1/2 to reach the centre, and
that (b) its motion is simple harmonic. (c) How is this quantity related to the free-fall time

referred to in Problem 1.2.

There’s no friction of course.

Power-law density: A spherically symmetric system with a density that falls off as
some power of the radius

ρ (r) = ρ0

(

r

r0

)−α

,

is singular at the origin if α > 0. The corresponding circular velocity is given by

v2c (r) =
4πGρ0 r

α
0

3−α
r2−α.

The mass interior to radius r thus is

M (r) ≡ r v2c
G

=
4π ρ0 r

α
0

3−α
r3−α,

which means that the mass grows without limit if α < 3. But since spiral rotation
curves are flat, i.e., vc=constant, this suggests that within the haloes of disk galaxies,
the mass density ρ is proportional to r−2 (see below).

However, the escape velocity

v2esc(r) = 2

∫ ∞

r

GM(s)

s2
ds =

2

α−2
v2c (r)

is finite as long as α > 2. Over the range 3 > α > 2, the ratio vesc/vc rises from
√
2

logarithmically to infinity.

Problem 2.5: Find the density ρ (r), circular speed vc (r) and escape speed vesc (r) for the
following model potentials, and find how their Mass behaves as a function of r for large r:

(a) The Hernquist potential

Φ (r) = − GM

r + b
;

(b) The Plummer potential

Φ (r) = − GM√
r2 + b2

;

(c) The Jaffe potential

Φ (r) =
GM

b
ln
(

r

r + b

)

,

where M and b are constants.



Dynamics in a gravitational field 13

Figure 2.3: Density profiles of common models (from http://www.astro.utu.fi/∼cflynn/

galdyn/lecture3.html).

Table I: Some examples of potential-density pairs

Potential Φ(r) Density ρ v2c

Hernquist −GM
r+a

M
2πa3

a4

r(r+a)3 GM r
(r+a)2

Plummer − GM√
r2+a2

3M
4πa3

a4

r(r+a)3 GM r2

(r2+a2)3/2

Jaffe −GM
a ln r+a

r
M

4πa3

a4

r2(r+a)2 GM 1
r+a

The Plummer density profile has a finite-density core and falls off as r−5 as r → ∞,
which is a steeper fall-off than is generally seen in galaxies. The Hernquist and Jaffe
profiles, on the other hand, both decline like r−4 at large r, which has a more sound
theoretical basis involving violent relaxation. The Hernquist model has a gentle power-
law cusp at small radii, while the Jaffe model has a steeper cusp.

The singular isothermal sphere

We saw above that the rotation curves of almost all spiral galaxies are remarkably
flat away from their centre, instead of being the expected Keplerian form (2.6). From
the above discussion, this means that at large radii, the mass of a spiral galaxy goes as
M (r) ∝ r and density ρ ∝ r−2. This provided an early evidence (in the early 1970s)
that the outer parts of galaxies have copious amounts of Dark matter. This also means
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that unless the distribution of matter is cut off at some yet undetermined radius, the
mass of each galaxy would diverge. This model density profile is known as the singular

isothermal sphere.

Unfortunately, the density of such a model diverges as r → 0. In real-life applica-
tions, “softened” forms like

ρ =
ρ0

(1 + r/r0)2
(2.7)

which have a finite density at the centre (and a “core” of radius r0) are often used. I
invite you to have a look at §4.4(b) of BT.

Figure 2.4: The radial dependence of density in the isothermal sphere model. The
solid curve represents ρ ∝ r−2, whereas the dotted curve represents Eq. 2.7.
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The virial theorem

Before going into details of stellar orbits, it is worth deriving this basic result that
applies to the system of gravitating stars as a whole. In fact it applies to any system of
particles bound by an inverse-square force law (e.g. electromagnetism, gravitation), and
states that the time-averaged kinetic energy (say 〈T 〉) and the time-averaged potential
energy (say 〈V 〉) satisfy

2 〈T 〉+ 〈V 〉 = 0. (2.8)

To prove this, consider the quantity

F =
∑

i

miẋi · xi (2.9)

where mi are the masses. Clearly

dF

dt
= 2T +

∑

i

miẍi · xi. (2.10)

If F is bounded then the long-time average 〈dF/dt〉 will vanish. Thus

2 〈T 〉+
∑

i

mi 〈ẍi · xi〉 = 0. (2.11)

If the system is gravitationally bound, we have

2 〈T 〉 −G
∑

i 6=j

mimj

〈

(xi − xj)

|xi − xj |3
· xi

〉

= 0. (2.12)

Interchanging the dummy indices in the second term and adding, we have

2 〈T 〉 − 1
2G

∑

i 6=j

mimj

〈

1

|xi − xj |

〉

= 0. (2.13)

But the second term is now just minus the total potential energy, which proves the
result (2.8).

The virial theorem provides an easy way to makes rough estimates of masses,
because velocity measurements can give 〈T 〉. But it is prudent to consider virial mass
estimates as order-of-magnitude only, because (i) generally one can measure only line-
of-sight velocities using redshift measures from spectra, and getting T = 1

2

∑

i miẋ
2
i

from there requires more assumptions (e.g. isotropy of the velocity distribution); and
(ii) the systems involved may not be in a steady state, in which case of course the virial
theorem does not apply. Clusters of galaxies are particularly likely to be quite far from
a steady state– we saw why in the previous chapter, in the context of the discussion on
crossing times and relaxation times.
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Applications of the virial thoerem

1: The Mass of the Perseus cluster of galaxies

The radial velocity dispersion of the Perseus cluster of galaxies is σr = 1100 km/s,
and its radius is 2.1h−1

70 Mpc, where the Hubble constant is H0 = 70h70 km/s/Mpc.
Assuming the cluster to be a sphere of uniform mass density ρ, and applying the virial
theorem 2T + V = 0, one can work out its mass in the following steps:

Kinetic Energy (T): Observers measure radial velocities vr of galaxies from Doppler
shifts in their spectra. The mean of all redshifts in a cluster 〈v〉 would yield the mean
radial velocity of the cluster with respect to the observer (largely due to the Hubble
expansion of the Universe). The dispersion σ2

r of the measured values of vr about this
mean would be a measure of the K.E. of the galaxies, so

T = 3× 1

2
Mσ2

r ,

where M is the combined mass of all the galaxies, the factor 3 accounting for the fact
that one measures only the radial component of the velocities of the galaxies, whereas
the kinetic energy would depend on the net spatial velocity v of each galaxy, and
statistically 〈v2〉 = 3〈σ2

r〉.

Potential Energy (V): The potential energy of a uniform sphere is calculated from
the work done to assemble the sphere out of shells of matter brough in from infinity
(work it out yourself!). Since gravitation is attractive, this quantity would be negative,
and is turns out that for a sphere of radius R and mass M , one gets

V = −3

5

GM2

R
. (2.14)

You would get the same answer for the potential energy of a sphere of uniform positive
charge due to electrostatic forces, but the sign would be positive.

So, one can estimate the virial mass M = 5R〈σ2
r〉/G, given the radius of the cluster

and its radial velocity dispersion.

Problem 2.6: Derive Eq. 2.14 for the potential energy of a gravitating sphere. Consider
the work done to assemble the sphere from thin shells brought from an infinite distance away.

Problem 2.7: Zwicky (1933) first pointed out, using the virial theorem, that there was 400
times as much dark matter as luminous matter in the Coma cluster of galaxies. However,
his conclusion was based on a Hubble constant of H0 = 558 km/s/Mpc. How would his
conclusion about the ratio of dark to luminous matter (known formally as mass-to-light ratio,
M/L) be affected, if we believe in the currently popular value of the Hubble constant H0 = 70
km/s/Mpc?
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2: The temperature of the intergalactic gas in a spherical galaxy

Imagine a spherical galaxy forming from a collapsing cloud of gas. A fraction of the
gas has turned into stars, but some of it is left over in the system as intergalactic gas,
in virial equilibrium with the gravitational potential of the entire galaxy, dark matter
and all. If we imagine this interstellar medium (ISM), which is mostly hydrogen, to be
an ideal gas, its mean square velocity 〈v2〉 is found by equating

1

2
µmp〈v2〉 =

3

2
kBTvir,

where µmp is the mean mass of each particle of the gas (for instance, if it is pure
atomic hydrogen, µ = 1, but if it is ionized pure hydrogen, then there are twice as
many particles, but only half of them are far more massive compared to the others,
so µ = 0.5), kB is the Boltzmann constant, and Tvir is its virial temperature. One
can also assume that the gas is in dynamical equilibrium with the galaxies, so if 〈v2〉
is the rms speed of the gas particles of the ISM, then, as in the previous section,
〈v2〉 = 3〈v2r〉, where 〈v2r〉 is the radial velocity dispersion measured from the redshifts
of galaxies. Furthermore, from the above example, 〈v2〉 = 3GM/5R. Therefore, the
virial temperature of the gas is

Tvir =
GM

5R

µmp

kB
= 1× 106µ

(

M

1011 M⊙

)(

10 kpc

R

)

K.

One can easily see that the hot interstellar medium (ISM) of galaxies or the inter-
galactic (IGM) medium of clusters of galaxies is expected to emit mostly in the X-ray
region of the electromagnetic spectrum.


