# FORMATION AND EVOLUTION OF GALAXIES





- Galaxy transformations
  - · Ram pressure stripping
  - Strangulation
- Galaxy formation in an expanding Universe

Somak Raychaudhury



# Additional physics?

- Ram-pressure stripping
- Collisions / harassment
- "Strangulation"





short timescale

Kenney et al. 2003

#### Quilis, Moore & Bower 2000

# Morphology-Density Relation Morphology-Density Relation Dressler 1980

# Additional physics?

- Ram-pressure stripping
- Collisions / harassment
- "Strangulation"



### Additional physics?

- Ram-pressure stripping
- Collisions / harassment
- "Strangulation"
  - Either through tidal disruption, or shock-heating to level at which it can't cool (e.g. Springel & Hernquist 2001)



long timescale

## Additional physics?

- Ram-pressure stripping (Gunn & Gott 1972)
- Collisions / harassment (Moore et al. 1995)
- "Strangulation" (Larson et al. 1980; Balogh et al. 2000)
  - Either through tidal disruption, or shock-heating to level at which it can't cool (e.g. Springel & Hernquist 2001)



long timescale

#### S to S0 transformation?



Kenney et al. 2003 Vollmer et al. 2004

• Ram pressure stripping of the disk could transform a spiral into a SO (Gunn & Gott 1972; Solanes & Salvador-Solé 2001)



 Strangulation may lead to anemic or passive spiral galaxies (Shiyoa et al. 2002)

Non-SF spiral galaxies from SDSS (Goto et al. 2003)

#### S to S0 transformation?



- But bulges of SO galaxies larger than those of spirals
- Requires S0 formation preferentially from spirals with large bulges perhaps due to extended merger history in dense regions

ressler 1980



Gill et al. 2004



Arguments against ram pressure stripping:

- 1. SO galaxies found far from the cluster core
  - Galaxies well beyond R<sub>virial</sub> may have already been through cluster core (e.g. Balogh et al. 2000; Mamon et al. 2004; Gill et al. 2004)
- 2. Morphology-density relation holds equally well for irregular clusters, centrally-concentrated clusters, and
  - but may be able to induce bursts strong enough to consume the gas

#### When did galaxies form: a rough estimate (1)

Consider a small ( $\delta\rho/\rho$  <<1) spherical perturbation of radius r:

$$M(r) \simeq (4\pi/3)r^3 \overline{\rho}_{matter} = (4\pi/3)r^3 (3H^2/8\pi G)\Omega_{matter}$$

For  $H_0=100h \text{ km/s/Mpc}$ ,

$$M(r)/M_{sun} \approx 1.16 \times 10^{12} h^2 \Omega_{matter} r_{Mpc}^3$$

For h=0.7 and 
$$\Omega_{\rm matter}$$
=0.25,  $M(r)/M_{\rm sun} \cong 1.4 \times 10^{11} r_{Mpc}^3$ 

i.e. an ~L\* galaxy coalesced from matter within a comoving volume of roughly ~ 1-1.5 Mpc radius