
6. Elliptical galaxies

Even though elliptical galaxies have relatively simple morphologies, and the absence
of dust obscuration makes observation simpler, the absence of gas makes it difficult to
study their dynamics since radio-telescopes cannot be used. Furthermore, even though
the conventional view is that if you’ve seen one elliptical, you’ve seen them all, in reality
elliptical galaxies can be far more complex than their morphology suggests.

Luminosity profiles

The surface brightness of elliptical galaxies (and bulges of spirals) as a function of radial
distance follows the same relation to remarkable accuracy
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This is known as the de Vaucouleurs R1/4 law. The length scale Re is known as its
effective radius, and the numerical value 3.33 is chosen such that if the galaxy were
circularly symmetric, then half the total light of the galaxy would lie within Re. The
outer parts of certain giant ellipticals, normally found at the centre of rich clusters of
galaxies, show more light than is expected from the de Vaucouleurs profile– these are
known as cD galaxies (see, e.g., B&M Fig. 4.28).

Problem 6.1: Show that the total luminosity of a galaxy with the R
1/4 profile (6.1) is
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Problem 6.2: Show that the central surface brightness of an elliptical galaxy with an R
1/4

profile (6.1) is I0 ∼ 2000 Ie, and its mean surface brightness within radius Re is ∼ 3.6 Ie.

The Fundamental Plane

The luminosity of an elliptical roughly scales as its average velocity dispersion as the
Faber-Jackson relation

L ∝ σ4, (6.2)

and is often used to measure distances to ellipticals (this was the relation used by the
‘Seven Samurai’, for instance, in the study that found evidence for a ‘Great attractor’
in our neighbourhood). But it turns out that all ellipticals don’t obey the F-J relation
in the same way–the surface brightness of the elliptical plays a role as well.

If we assume that the velocity dispersion of stars σ and the M/L ratio is constant
throughout an elliptical galaxy, we can use the virial theorem to infer a relation between
the global measurable parameters of ellipticals. From the virial theorem we have 2T +
V = 0, or, approximately,
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This gives mass M ∼ v2R/G. The mass surface density then should go as
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whereas the surface brightness is
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For an elliptical galaxy which has very little rotation, the v in the above equation is
really its velocity dispersion σ. Replacing the R by the characteristic half-light radius
Re, we have

Re ∼ σ2 I−1,

whereas the measured result from real ellipticals is (see S&G, Fig. 6.13)

Re ∼ σ1.24 I−0.82.

This is known as the Fundamental Plane relation, and the fact that the theoretical
expectation doesn’t match the observed relation probably shows that our assumption
of the M/L ratio being constant throughout the galaxy isn’t correct.

Problem 6.3: Show that if all ellipticals had the same surface brightness Ie at radius Re,
they would follow the Faber-Jackson relation (6.2).

Do Elliptical galaxies rotate?

The tensor virial theorem, which can be derived from the collisionless Boltzmann equa-
tion (see B&T §4.3) predicts that if the flattened shape of an elliptical galaxy were
due to its rotation, then the ratio of its average rotational speed to its average velocity
dispersion would be
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where ǫ = 1 − b/a is the ellipticity of the galaxy. This applies to an isotropic rotating
oblate spheroid with similar, concentric density contours– a somewhat idealized, but
realistic model of an elliptical galaxy. According to this relation, even fairly round
galaxies (b/a ∼ 0.7) should rotate fairly fast.

Observations of ellipticals, however, indicate that luminous elliptical galaxies span
a range of values for v/σ, but all these values are far too small to indicate that elliptical
galaxies are flattened by rotation (see S&G, Fig. 6.14 or B&T Fig. 4.6). The flattening
in these systems is caused by velocity anisotropy of their stars. Fainter ellipticals, and
bulges of spirals, however, have v/σ ∼ 1, indicating a significant role for rotation in
determining their shapes. These are probably composite systems, with a fast-rotating
stellar disk embedded within a slower-rotating ellipsoidal outer galaxy.


