SUBROUTINE WCI_CNA2S( APOS, PIXID, PRJID, SPOS, STATUS )
*+
* Name:
* WCI_CNA2S
* Purpose:
* Convert position in axis units to standard system
* Language:
* Starlink Fortran
* Invocation:
* CALL WCI_CNA2S( APOS, PIXID, PRJID, SPOS, STATUS )
* Description:
* Convert the position APOS in native axis units to standard coordinates
* in radians. The position is first de-rotated if the position angle
* defined in the pixellation object is non-zero, then the map projection
* specified by PRJID is supplied.
* Arguments:
* APOS[2] = REAL (given)
* Position in fractional pixels. 1.0 is the centre of the first pixel
* PIXID = INTEGER (given)
* Pixellation object
* PRJID = INTEGER (given)
* Projection object
* SPOS[2] = DOUBLE (returned)
* Celestial position in radians
* STATUS = INTEGER (given and returned)
* The global status.
* Examples:
* {routine_example_text}
* {routine_example_description}
* Pitfalls:
* {pitfall_description}...
* Notes:
* {routine_notes}...
* Prior Requirements:
* - WCI1_INIT must have been run (implicitly by calls to public WCI
* routines which create ADI identifiers)
* Side Effects:
* {routine_side_effects}...
* Algorithm:
* {algorithm_description}...
* Accuracy:
* {routine_accuracy}
* Timing:
* {routine_timing}
* External Routines Used:
* ADI:
* ADI_GET/MAP Various ADI data access routines
* SLA:
* SLA_DCS2C Spherical to Cartesian conversion
* SLA_DCC2S Cartesian to spherical conversion
* Implementation Deficiencies:
* {routine_deficiencies}...
* References:
* WCI Subroutine Guide : http://www.sr.bham.ac.uk/asterix-docs/Programmer/Guides/wci.html
* Keywords:
* package:wci, usage:public, coordinate conversion
* Copyright:
* Copyright (C) University of Birmingham, 1995
* Authors:
* DJA: David J. Allan (Jet-X, University of Birmingham)
* {enter_new_authors_here}
* History:
* 5 Jan 1995 (DJA):
* Original version.
* {enter_changes_here}
* Bugs:
* {note_any_bugs_here}
*-
* Type Definitions:
IMPLICIT NONE ! No implicit typing
* Global Constants:
INCLUDE 'SAE_PAR' ! Standard SAE constants
INCLUDE 'AST_PKG'
* Arguments Given:
REAL APOS(2)
INTEGER PIXID, PRJID
* Arguments Returned:
DOUBLE PRECISION SPOS(2)
* Status:
INTEGER STATUS ! Global status
* External references:
EXTERNAL AST_QPKGI
LOGICAL AST_QPKGI
EXTERNAL SLA_DRANGE
DOUBLE PRECISION SLA_DRANGE
EXTERNAL SLA_DRANRM
DOUBLE PRECISION SLA_DRANRM
* Local Variables:
DOUBLE PRECISION LAPOS(2) ! Position in axis units
DOUBLE PRECISION RPH(2) ! Relative physical posn
DOUBLE PRECISION RPHP(2) ! Projected coords
DOUBLE PRECISION RPHV(3) ! Cartesian RPH
DOUBLE PRECISION STDV(3) ! Cartesian SPOS
DOUBLE PRECISION UCONV(2) ! Unit conversions
INTEGER DDIM ! Dummy dimensions
INTEGER RPTR ! Ptr to rotation matrix
*.
* Check inherited global status.
IF ( STATUS .NE. SAI__OK ) RETURN
* Check initialised
IF ( .NOT. AST_QPKGI( WCI__PKG ) ) CALL WCI1_INIT( STATUS )
* Extract radian conversions for axes
CALL ADI_CGET1D( PIXID, 'UCONV', 2, UCONV, DDIM, STATUS )
* Convert axis position to radians
LAPOS(1) = DBLE(APOS(1)) * UCONV(1)
LAPOS(2) = DBLE(APOS(2)) * UCONV(2)
* De-rotate. This is now relative physical units wrt to the projection
* special point
CALL WCI1_ROTA( LAPOS, PIXID, .FALSE., RPHP, STATUS )
* De-project to get native sphericals
CALL WCI_UNPROJ( RPHP, PRJID, RPH, STATUS )
* Get rotation matrix from projection
CALL ADI_CMAPD( PRJID, 'RMATRIX', 'READ', RPTR, STATUS )
* Generate 3-vector for RPHP
CALL SLA_DCS2C( RPH(1), RPH(2), RPHV )
* Rotate it
CALL SLA_DIMXV( %VAL(RPTR), RPHV, STDV )
* Unmap matrix
CALL ADI_CUNMAP( PRJID, 'RMATRIX', RPTR, STATUS )
* Extract output position
CALL SLA_DCC2S( STDV, SPOS(1), SPOS(2) )
* Force into range
SPOS(1) = SLA_DRANRM( SPOS(1) )
SPOS(2) = SLA_DRANGE( SPOS(2) )
* Report any errors
IF ( STATUS .NE. SAI__OK ) CALL AST_REXIT( 'WCI_CNA2S', STATUS )
END