Satellite Quenching and Galactic Conformity around Massive Galaxies at $0.3 < z < 2.5$

Lalitwadee Kawinwanichakij (Nancy)
Ryan Quadri
Casey Papovich

Texas A&M University
George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy

and ZFOURGE/CANDELS teams

In the Footsteps of Galaxies:
Tracing the Evolution of Environmental Effects
Soverato-Italy, 7th-11th September 2015
What is Galactic Conformity?

fraction of late-type galaxies

also from SDSS, Wang & White 2012
Kauffmann et al. 2013
Knobel et al. 2014
and UDS at z ~2, Hartley et al. 2015

halo mass

Weinmann et al. 2006
What processes quench galaxies?

What is the physical origin of the conformity?
What processes quench galaxies?

What is the physical origin of the conformity?

We explore the correlation between the star-formation activity of central galaxies and their satellites over a large range of stellar mass ($9.3 < \log(M/M_\odot) < 10.1$) and $0.3 < z < 2.5$.
UKIDSS UDS DR8

- The deepest degree-scale (0.77 deg2) near -IR survey
- The K-band reaches 24.6 mag (5σ AB) (Williams et al. 2009; Quadri et al. 2012)

UltraVISTA

- The catalog covers 1.62 deg2 in the COSMOS field. (Muzzin et al. 2013b)
- 40 nights on 6.5m Magellan Baade telescope at Las Campanas Observatory
- Five Medium-band filters in the near-IR
95% Stellar mass-completeness limit

Relative areas of all three surveys
Quiescent Fraction of Satellite

Isolation criteria: exclude galaxies from central sample, if there is more massive galaxies within 300 ckpc.

\[f_{\text{sat}} = \frac{\sum (N_{q}^{sc} - N_{q}^{bg})}{\sum (N_{tot}^{sc} - N_{tot}^{bg})} \]

Tal et al. 2014
Quiescent Fraction of Satellite

Satellite selection criteria:

\[|z_{cen} - z_{sat}| \leq 0.2 \]

\[M_{lim} \leq M_{sat} < 10^{10.2} \, M_{\odot} \]

Tal et al. 2014
Quenching efficiency

Fraction of satellites that have been quenched in excess of the quenched field galaxy population,

\[\epsilon_{q, sat} = \frac{f_{q, sat} - f_{q, bg}}{1 - f_{q, bg}} \]
Detection of Galactic Conformity to z \sim 2 in UDS, UltraVISTA, and ZFOURGE

A galaxy is not quenched as it becomes a satellite of a central galaxy.

L. Kawinwanichakij, ZFOURGE/CANDELS, submitted
Detection of Galactic Conformity to $z \sim 2$

Satellites around both *star-forming* and *quiescent* centrals have positive quenching efficiencies.

L. Kawinwanichakij, *ZFOURGE/CANDELS*, submitted
Detection of Galactic Conformity to z ~ 2

Quiescent fraction

Quenching efficiency

Strong conformity signal at 0.6 < z < 0.9 and at 0.9 < z < 1.6 (~3-4 sigma).

L. Kawinwanichakij, ZFOURGE/CANDELS, submitted
At fixed stellar mass, quiescent centrals have a higher number density of satellites (~2x) compared to star-forming.

Kawinwanichakij et al. 2014
At fixed stellar mass, quiescent central galaxies occupy more massive halos than star-forming central galaxies.

Kawinwanichakij et al. 2014

Comparison the Guo et al. SAM:
The Role of Halo Mass

median halo mass is higher by ~0.3 dex

Kawinwanichakij et al. 2014

(e.g., Mandelbaum et al. 2006, More et al. 2011, Hartley et al. 2013, Phillips et al. 2014)
Does Halo Mass Drive Galactic Conformity?

Assumption: Number of satellites around our centrals scales with halo mass.

L. Kawinwanichakij, ZFOURGE/CANDELS, submitted
Halo mass appears not to account for all of the conformity

L. Kawinwanichakij, ZFOURGE/CANDELS, submitted
Some Possible Origins of Small-Scale Conformity:

- Hot gas content of halo
- Halo conformity with galaxy color-halo age relation (Bray et al. 2015)
- Halo accretion conformity (Hearin et al. 2014, 2015)
Positive quenching efficiency of satellites around star-forming centrals out to z ~ 2 likely requires:

- High-z needs fast-acting quenching (e.g., Weinmann +10, Tinker & Wetzel 2010, Quadri +12)

- Low-z needs slow-acting quenching (e.g., McGee +11, De Lucia +12, Heines +13)
Conclusion

• Satellites have excess quenching above similar galaxies in the field regardless of the activity of their central galaxy.

• **Galactic conformity exists at $0.3 < z < 2.5$:** Higher quiescent fractions for satellites around quiescent centrals compared to satellites around star-forming centrals at fixed stellar mass.

• While the halo mass may be a significant driver of conformity, it is unable to explain all of the conformity signals.
At fixed halo mass, the number density of satellites at $10 < r/kpc < 100$ equal between quiescent and star-forming central.

Kawinwanichakij et al. 2014

Comparison the Guo et al. SAM: The Role of Halo Mass

Kawinwanichakij et al. 2014
UVJ color selection

Start by defining a generic region of the UVJ diagram for quiescent galaxies as,

\[U - V > A \times (V - J) + zp \]
\[U - V > 1.3 \]
\[V - J < 1.6 \]

where \(A \) is slope of the red sequence
\(zp \) is zeropoint
UVJ color selection: UDS

Step 1. Fit the slope of the red sequence. Set the diagonal of the UVJ selection to this slope.

(U-V)_{rest} vs. (V-J)_{rest}

0.3 < z < 1.6

UDS
slope=1.00
zp=0.35

Normalized number vs. Distance from UVJ diagonal line

23
UVJ color selection: UltraVISTA

Step 2. Measure the distribution of color distance from the diagonal line.

UltraVISTA
slope=1.20
zp=0.35

0.3<z<1.6
UVJ color selection: ZFOURGE

Step 3: Define the zeropoint of the UVJ selection as the local minimum between the red and blue sequences.
1-halo and 2-halo conformity

• **1-halo conformity (intra-halo effect)**
 present amongst the galaxies within a single parent dark matter halo

• **2-halo conformity (inter-halo effect)**
 a separate effect acting on galaxies in neighboring halos
Halo accretion conformity (Hearin et al. 2014, 2015):

No large-scale conformity at $z > 1$? and Large-scale conformity naturally lead to small scale-conformity

No small-scale conformity at $z > 1$?
Observe strong small scale conformity out to z < 1.6 and much weaker at 1.6 < z < 2.5.

- Halo accretion conformity (Hearin et al. 2014, 2015):

 Large scale conformity extends to z > 1 than predicted

 or

 Small scale conformity is not simply caused by assembly histories
Observe strong small scale conformity out to $z < 1.6$ and much weaker at $1.6 < z < 2.5$.

- Halo accretion conformity (Hearin et al. 2014, 2015):

 - Large scale conformity extends to $z > 1$ than predicted
 - Small scale conformity is not simply caused by assembly histories

 Require large and deep datasets