Connecting Environment and Galaxy Evolution:
Star Formation and Gas in Compact Groups

Lisa May Walker
Steward Observatory
lisamay@email.arizona.edu

In the footsteps of galaxies
10 September 2015
Importance of Environment

Field
- More Spirals
- Secular evolution is the norm
- Significant star formation
- Neutral-gas rich
- E’s have hot gas

Clusters
- More Ellipticals
- Interactions & mergers common
- Little to no star formation
- Neutral-gas poor
- Tend to have hot gas
The CG Environment

Compact Groups

- More Ellipticals
- Interactions & mergers common
- Lots to little star formation
- Range in neutral gas abundances
- Hot gas only associated with individual galaxies
Star Formation in Compact Groups

* Some CGs show abundant star formation (Iglesias-Páramo 99; Gallager+10)

* However, %E is higher than field (Lee+04; Deng+08; Coenda+12)

* E’s in CGs on average older than field (e.g., Proctor+04, Mendes de Oliveira+05; de la Rosa+07; Plauchu-Frayn+12)
Cold Gas in CGs

- Compact groups show wide range of H I content (Verdes-Montenegro+01)
- Distribution of H I also varies
- Content and distribution not necessarily correlated!

A. Heiderman, priv. comm.
A Multi-\(\lambda\) Approach

- X-ray + optical Hot Gas
- HST BVI ACS Stars
- Spitzer IR Warm Dust
- VLA H I + HST Neutral Gas
Hickson CGs

- Hickson 1982
- Photometric survey with spectroscopic confirmation
- 92 spectroscopically-confirmed groups

Redshift Survey CGs

- Barton+ 1996
- Redshift survey; friends-of-friends algorithm
- 89 groups; 15 are also HCGs
Mid-IR Canyon

Compact Groups

Other Environments

Walker+2012
Relationship to Optical CMDs
Optical CMD

Compact Groups

LVL+SINGS

Walker+2013
* Previously have compared with M_{dyn}
Comparison with M_*

- HCGs and RSCGs have similar distributions
- No correlation between M_{HI} and M_*
* Divide into HI-Rich, HI-Intermediate, HI-Poor
$$\log\left(\frac{f_{8.0}}{f_{4.5}}\right)$$

$$\log\left(\frac{f_{5.8}}{f_{3.6}}\right)$$

Active SF

Quiescent

HI Poor

HI Int

HI Rich

Active SF

Quiescent

HI Poor

HI Int

HI Rich

Number

Mid-IR Color

$\log(M_{\text{HI}}/M_*) < -2.20$

$-2.20 \leq \log(M_{\text{HI}}/M_*) < -1.45$

$-1.45 \leq \log(M_{\text{HI}}/M_*)$
RSCG 34: NGC 2968

SDSS

Spitzer
RSCG 42: KUG 1131+202A

- **SDSS**
 - ARK303
 - KUG1131+202A
 - UGC6583

- **Spitzer**
 - CGCG 97-026
 - CGCG 97-027

- **Scott+12**
 - CGCG 97-026

Graph showing velocity in km/s with intensity in F (Jy).
RSCG 64: NGC 4613
Bimodal distribution in mid-IR colorspace
- Unique to high density, non-preprocessed environment

Mid-IR transition galaxies fall on optical red sequence
- In hospitable to low-mass, SF galaxies

Regardless of distribution of H I:
- Quiescent galaxies tend to live in H I-poor groups
- Actively SF galaxies more commonly in H I-rich groups

Rogue galaxies likely due to strong interactions in CGs
- RSCG 34: NGC 2968
- RSCG 42: KUG 1131+202A
- RSCG 64: NGC 4613