When Galaxy Clusters Collide: the impact of merger shocks on galaxy evolution

Andra Stroe
astroe@strw.leidenuniv.nl
Twitter: @Andra_Stroe
www.strw.leidenuniv.nl/~astroe

David Sobral, Reinout van Weeren, Huub Röttgering, James Jee, Will Dawson, Henk Hoekstra, Tom Oosterloo, Marcus Brüggen, Dave Wittman

In the Footsteps of Galaxies, 11 September 2015
Structure formation leads to shocks!

• Clusters grow through mergers
• Structure formation is a very violent process which leads to energy releases of up to 10^{64} erg (e.g. Hoeft et al. 2004)
• Some of the energy is released in the form of shocks
• Cosmological simulations predict $M=1-10$ shocks to be common in clusters and the filaments that connect them (e.g. Pfrommer et al. 2006)
Cluster radio relics

- Extended (Mpc-wide), diffuse patches of radio synchrotron emission
- Located at the outskirts of merging clusters
- No obvious optical counterpart
- Associated with the electrons in the ICM

Abell 3667

X-ray intensity in color, radio emission in white contours (Rottgering et al. 1997)
Why are relics important?

- The largest particle accelerators in the world!
- Select merging clusters
- Study effect of cluster merger on galaxies

The LHC is not impressed with radio relics! Maybe it's just jealous!
The 'Toothbrush' and 'Sausage' clusters

- $z \approx 0.2$
- Extremely massive ($> 10^{15} \, M_\odot$)
- X-ray luminous, disturbed morphology
- Merger in the plane of the sky \rightarrow twin, outward traveling shock waves

Does the shock inhibit or trigger star formation?

- **Hα emission line**
 - Well calibrated
 - Sensitive
 - Compare with field and other clusters – same selection
 - Uniformly select large samples
 - Narrow-band technique – trace Hα at the redshift of the cluster

Sobral et al. 2009
Distribution of emitters

- 323 MHz radio intensity in gray
- Hα line emitters in red circles
- Many extended Hα emitters around the relic areas in the 'Sausage' cluster
- The 'Toothbrush' almost devoid of Hα emitters

Stroe et al. 2014a, 2015a
Hα luminosity function for the cluster volume

- 'Toothbrush' is consistent a blank field – same number of emitters, but slightly less luminous (=less star-forming)
- 'Sausage' emitters – higher normalization → many more luminous emitters than blank fields
Focusing on the 'Sausage' - evidence for supernovae

- Star forming galaxies in the hottest X-ray gas and/or in the cluster sub-cores (away from the shock fronts) show very low electron densities (<30 times lower than field galaxies)
- Significant contribution from supernovae
- Supernovae + AGN drive outflows (blueshifted and redshifted [SII]+NaD) → remove fuel for star-formation

Sobral, Stroe et al. 2015
Focusing on the 'Sausage' - increased metallicity

- Star forming galaxies in the cluster follow the local mass-metallicity relation
- Suggesting that these H\(\alpha\) emitters are using relatively metal rich gas to form new stars at all stellar masses
- Source of metal rich gas?
 - Accretion of high-metallicity ICM gas
 - Pre-enriched gas from supernovae in the past that was retained in the galaxies

Sobral, Stroe et al. 2015
Star formation on longer timescales in the 'Sausage'

- Use radio emission to trace super nova remnants
- Hα emission correlates with radio emission → star formation averaged over 10 Myr & 100 Myr
- A large fraction of cluster Hα emitters have radio → many more super novae in cluster galaxies compared to the field

Stroe et al. 2015b
HI to trace neutral gas content in the 'Sausage' field

- HI at the position of Hα emitters
- Use stacking:
 - Cluster line emitters
 - Field line emitters
- Cluster Hα emitters have just as much HI as their field counterparts
- HI gas should get stripped by cluster environment

<table>
<thead>
<tr>
<th></th>
<th>$M_{\text{HI}} (10^9 M_\odot)$</th>
<th>$M_\star (10^9 M_\odot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Hα</td>
<td>2.50 ± 0.62</td>
<td>7.4 ± 0.5</td>
</tr>
<tr>
<td>Field Hα</td>
<td>1.86 ± 1.20</td>
<td>4.8 ± 0.8</td>
</tr>
</tbody>
</table>

Stroe et al. 2015b
Star-formation process?

- Cluster galaxies interact strongly with their environment
- **Shock fronts** have traveled more than 1 Mpc though the ICM → interacted with the cluster members?

Shock induced star-formation?

The gas in the galaxies is shocked!!
Shock induced star-formation?

- Roediger et al. (2014): after passage of a shock, star-formation starts in the galaxy for a few hundred million years
'Sausage' vs 'Toothbrush'

- Hα luminosity function and star-forming properties of the 'Sausage' and 'Toothbrush' are wildly different
Hα luminosity function – 'Sausage' vs 'Toothbrush'

- Hα luminosity properties of the 'Sausage' and 'Toothbrush' are wildly different

<table>
<thead>
<tr>
<th></th>
<th>'Sausage'</th>
<th>'Toothbrush'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redshift</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>Temperature</td>
<td>7 keV</td>
<td>8 keV</td>
</tr>
<tr>
<td>Radio</td>
<td>2 relics</td>
<td>2 relics</td>
</tr>
<tr>
<td>Morphology</td>
<td>Elongated north-south</td>
<td>Elongated north-south</td>
</tr>
<tr>
<td>Orientation</td>
<td>In the plane of the sky</td>
<td>In the plane of the sky</td>
</tr>
<tr>
<td>Merger history</td>
<td>2 equal mass clusters</td>
<td>2 equal mass clusters + smaller sub-cluster</td>
</tr>
<tr>
<td></td>
<td>(van Weeren et al. 2011; Jee, Stroe et al. 2014)</td>
<td>(Brüggen et al. 2011; Jee in prep.)</td>
</tr>
<tr>
<td>Core passage time</td>
<td>~1 Gyr</td>
<td>~2 Gyr</td>
</tr>
<tr>
<td></td>
<td>(van Weeren et al. 2011, Stroe et al. 2014c)</td>
<td>(Brüggen et al. 2011)</td>
</tr>
</tbody>
</table>
Star formation – 'Sausage' vs 'Toothbrush'

• Shock compression → excites star formation as the shock passes through a galaxy
• Observe the cluster when shock-induced star formation is still active
• We are viewing the 'Toothbrush' cluster at a more evolved 'time-slice' → galaxies evolved into ellipticals
• The 'Sausage' is full of massive galaxies → easier to hold onto their molecular gas during the cluster merger → numerous gas-rich galaxies for the shock to 'light-up'
• Even though clusters could go through episodes of vigorous star formation, the total stellar mass added is little
• Reversal of the normal trends
• Bursty star-formation → acceleration of evolution to passives
Take away message

Cluster shocks interact with the galaxies!

Thank you!
Questions?