Home General Information Registration Science Programme Social Programme Accommodation Location & Travel Contacts Press Jobs Fair Online Proceedings NAM / UKSP 2005 Sponsors

RAS
PPARC
University of Birmingham
Other Sponsors
Blackwell Publishing
Cambridge University Press

ROYAL ASTRONOMICAL SOCIETY PRESS NOTICE

Date: 25 March 2005

Ref. PN 05/25 (NAM 18)

EMBARGOED FOR 00.01 A.M. (BST) ON FRIDAY 8 APRIL 2005

Issued by: RAS Communications Officers

 

Peter Bond
Tel: +44 (0)1483-268672  Fax: +44 (0)1483-274047 (Except 4 - 9 April)
Mobile: +44 (0)7711-213486
E-mail: PeterRBond@aol.com

 

Anita Heward
Tel: +44 (0)1483-420904 (Except 4 - 8 April)
Mobile: +44 (0)7778-538449
E-mail: anitaheward@btinternet.com

 

National Astronomy Meeting Press Room (5 - 8 April only):
Tel: +44 (0)121-414-9201, 414-9202, 414-9203, 414-9204
Fax: +44 (0)121-414-9200

 

RAS web site: http://www.ras.org.uk/

PPARC web site: http://www.pparc.ac.uk/

RAS NATIONAL ASTRONOMY MEETING 2005

TUESDAY 5 APRIL TO FRIDAY 8 APRIL AT THE UNIVERSITY OF BIRMINGHAM

CLUSTERS, NEAR AND FAR, HAVE A LOT IN COMMON

Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis.

 

The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to weigh these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe.

 

Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these clusters.

 

Scientists can test and improve models of the Universe by comparing these predictions with observations. The most powerful way of doing this is to measure the masses of galaxy clusters, particularly those in the distant Universe. However, weighing galaxy clusters is extremely difficult. One relatively easy way to weigh a galaxy cluster is to use simple laws (scaling relations) to estimate its weight from properties that are easy to observe, like its luminosity (brightness) or temperature. This is like estimating someones weight from their height if you didnt have any scales. Over the last 3 years, a team of researchers, led by Ben Maughan, has observed 11 distant galaxy clusters with ESAs XMM-Newton and NASAs Chandra X-ray Observatory. The clusters have redshifts of z = 0.6-1.0, which corresponds to distances of 6 to 8 billion light years. This means that we see them as they were when the Universe was half its present age.

 

The survey included two unusual systems, one in which two massive clusters are merging and another extremely massive cluster which appears very relaxed and undisturbed. The X-ray data allowed the scientists to measure the temperatures and luminosities of the gas in the clusters. They were then able to infer their total masses, which varied between 200 and 1,100 times the mass of our Milky Way galaxy.

 

These measurements were then used to test whether galaxy clusters of different sizes and located at different distances from us are simply scaled versions of each other -- a condition known as being self-similar. This is an important characteristic for astronomers to identify if they hope to get the true weights of galaxy clusters.

 

For example, chocolate bars are strongly self-similar, said Maughan. If you shrank a king-size bar to a fun-size bar, they would be identical versions of each other but just different sizes. However, if you shrank a castle to the size of a bungalow, they would be very different structures, despite being the same size. This means that they are not strongly self-similar objects.

 

Another possible type of relationship between clusters is what scientists call weakly self-similar. In this case, galaxy clusters in the distant universe and those nearby are almost identical to each other, but not exactly the same. (The only differences between them can be accounted for by the expansion of the Universe since the Big Bang.)

 

Although astronomers have known for some time that galaxy clusters are not strongly self-similar, the question of whether or not they are weakly self-similar has remained open. The new results show that as long as astronomers take into account the continuous expansion of the Universe, then galaxy clusters are, in fact, weakly self-similar. This means that the same scaling relations used to weigh nearby galaxy clusters hold true for these very distant clusters. Our results mean that weighing distant galaxy clusters could become as easy as converting from Fahrenheit to Celsius, said Maughan. This will help to answer important questions about the nature and structure of the Universe. The other members of the team were: Laurence Jones (University of Birmingham, UK) Harald Ebeling (Institute for Astronomy, HI, USA), and Caleb Scharf (Columbia Astrophysics Laboratory, NY, USA).

 

The observations were made with the European Photon Imaging Camera (EPIC) on XMM and the Advanced Camera for Imaging and Spectroscopy (ACIS) on Chandra. They were part of the WARPS survey of distant galaxy clusters detected by chance in observations made with the UK-US-Dutch ROSAT X-ray satellite.

CONTACT:

From Wednesday 6 April to Friday 8 April, Dr. Maughan can be contacted via the NAM press office (see above).

Normal contact details:

Dr. Ben Maughan
High Energy Astrophysics Division
Harvard-Smithsonian CfA
Cambridge, MA 02138
USA
Tel: +1 617-496-1887
Fax: +1 617-496-7969
E-mail: bmaughan@cfa.harvard.edu

NOTES FOR EDITORS

The 2005 RAS National Astronomy Meeting is hosted by the University of Birmingham, and sponsored by the Royal Astronomical and the UK Particle Physics and Astronomy Research Council (PPARC).

 

LINKS AND AN IMAGE CAN BE FOUND ON THE WEB AT: http://hea-www.harvard.edu/~bmaughan/scaling/press.html