Studying the mass assembly and luminosity gap in fossil groups of galaxies from the Millennium Simulation

Ali Dariush, University of Birmingham

Collaborators

S. Raychaudhury, T. Ponman (Birmingham) F. Pearce (Nottingham) H. Khosroshahi (Liverpool JMU)

Fossil galaxy groups

 Fossil galaxy groups are interpreted as systems that have
formed early in which L* galaxies have been merged over billion of years (Jones et al., MNRAS, 2003).

Observational criteria

Fossil groups are dominated by a single **giant elliptical** galaxy at the centre of an extended bright **X-ray halo**

 Δm_{12} >2 (within 0.5r_{vir})

$$L_X > 0.25 \times 10^{42} h_{100}^{-2} \text{ erg s}^{-1}$$

Evidence from Scaling relations

- For a given optical luminosity of the group, fossils are more X-ray luminous.
- Fossils show higher X-ray luminosity and temperature for a given group velocity dispersion.
- Mass concentration in fossils is higher than in non-fossil groups and clusters.

(Khosroshahi et al., MNRAS,2007)

Magnitude gap SAM vs. OBSERVATION

Dariush et al. (2008, in preparation +NAM08)

- Agreement between the observed magnitude gap (SDSS / 2dFGRS) and SAM (Bower+06)
- Early formed groups <u>do not</u> necessarily develop large magnitude gaps ∆ m₁₂>2 (problem with SAM or current definition of fossil groups).
- <u>Assuming</u> that the current SAM predicts properly the observed properties of early formed groups, then the optical condition ∆ m₁₆>3 does <u>better separate</u> old/early formed groups from normal groups.

Redshift

Redshift