

Examining Basic Assumptions in Semi-Analytic Models Romeel Davé, Arizona with: Neal Katz, Dušan Kereš, Ben D. Oppenheimer, Kristian Finlator, Mark Fardal, David Weinberg

How Do Galaxies Form?

- No ab initio models exist-- heuristic approaches, requiring parameters, needed for *all* models.
- More assumptions + parameters = less computation. Huzzah!
- Goal: Learn about physics (not match data, or convince observers!)

How far can we push a heuristic approach, and still learn something about the physics?

Parameters and Assumptions

- Besides many parameters, SAMs must make key physical assumptions:
- - Spherical symmetry
- - Gas redistribution
- - Timescales

_

• - Where to add feedback

- These assumptions strongly affect predictions! But are they robust?

Accretion

- Accretion occurs via: -Hot mode (slow: t_{cool}) Cold mode (fast: t_{ff})
- Governed by halo mass.
- 3-D filamentarity enhances cold mode.

Geometry & Accretion

Spherical models underestimate cold mode. Important around L_{*}!

How much? Depends on assumed timescale, gas profile.

Cold mode dominates global accretion at all redshifts, masses

Keres etal 08 in prep

Geometry & Overcooling

Cold mode is rapid, so early galaxies form too many stars.

Early SAMs had trouble getting enough big early galaxies – e.g. "Christmas tree" model for LBGs.

In reality, problem is opposite: Need lots of *early feedback*.

Geometry & Downsizing

Large galaxies form stars early+fast in cold mode, then SF slows as they become hot mode dominated.

But it doesn't slow enough – need "AGN feedback".

How much? Depends on assumptions about gas (re)distribution...

Cooling and Accretion in Large Halos

Keres etal 08, in prep

Density profiles suppressed in center. Accretion rate much lower than Croton etal SAM.

Can AGN Feedback fix the stellar mass function?

If AGN feedback oper-ates only on "hot mode" (eg radio mode), then: NO.

It works in (some) SAMs since hot mode overly strong.

Need to prevent early SF that dry merges.

Keres etal 08, in prep

Geometry also critical for Feedback

Example: Mass-Metallicity Relation

- Observed: Z_{gas} ∝∞M*^{0.3}, M*~10⁶→10^{10.5}M_m, then flattens. σ≈0.1.
- Conventional thinking:
 - Z_{gas} reflects current stage of gas reservoir processing.
 - Winds carry metals more easily out of small galaxies (Dekel & Silk 86).
- WRONG !!! (according to our sims)

What Drives the MZR?

- Model with constant wind speed does not match MZR!
- Momentum-driven scalings matches z~2 data.
- MZR is an *equilibrium state* of gas accretion (ACC) vs. star formation (SFR).
- $Z_{eq} = \gamma SFR/ACC \approx \gamma/(1+\eta_{eff})$.
- Wind speed is (mostly) irrelevant!
- vzw: η~M_{*}^{-1/3}~v_c⁻¹⇒Z(M_{*})~M_{*}^{1/3}, as observed!

MZR Scatter

- Lee etal 06: Dekel&Silk scenario over-produces scatter at low M*.
- In "equilibrium model", scatter comes from departures from Z_{eq} from stochastic accretion.
- Timescale to return to Z_{eq} : $t_d = ACC/M_{gas}$.
- Small $t_d \Rightarrow \Rightarrow$ low scatter.
- SF'ing gals lie below MZR.

Finlator & RD 07

Why was the old MZR interpretation wrong?

- Geometry.
- Old interpretation: SN energy distributed spherically in halo.
- New: Outflows blow holes; energy escapes!

Keres etal 08, in prep

Summary

- 3D geometry critical in galaxy formation.
- Basic assumptions in current SAMs renders them non-robust as a predictive tool for galaxy formation physics.
- Simulations give different intuition: Cold mode dominant; need to suppress SF early; must have ejective feedback.
- SAMs are The Future! ... it's just that the future is a long ways off; we need new approaches.

ICM Enrichment + Pre-heating?

- L_x-weighted [Fe/H]_~1/3
 Z, as observed.
- No winds looks ok, but stellar baryon fraction >> observed; spurious!
- ⇒ Need outflows to spread baryons in ICM.
- Intragroup gas shows excess entropy over no winds; "pre-heating".
- ICM is pre-heated to correct levels naturally with outflows.

Matches galaxies' gas content?

- η ~1/σ keeps smaller galaxies more gas-rich; decent match to z=2 data (Erb etal).
- Other wind models don't match.
- Baryons ejected from halos: By z=0, ~40% of baryons in MW halo have gone into the IGM!

Matches DLA Kinematics?

- Wide separation (A v>v_{rot}) DLAs difficult to reproduce; protogalactic clump infall model fails.
- Momentum-drive winds puff out gas, produces wide-separation systems. <u>S. Hong, Katz, RD etal, in prep</u>

High-z Galaxy Luminosity Functions

- Outflows also affect galaxy properties, particularly early on.
- Large suppression of SF is required to obtain agreement with available data.
- Momentum-driven wind models works well.

RD, Finlator, Oppenheimer 06