Sub-mm galaxies as a test of semianalytical models

Cedric Lacey

Institute for Computational Cosmology

Outline

- Physical processes
- Multi-wavelength modelling
 - Dust and radio emission
- Sub-mm galaxies
 - Why important?
 - Need for IMF variations?
- Multi-wavelength observational comparison with SMGs
- What have we learned & future directions

Collaborators

Galaxy formation models (GALFORM):

- Carlton Baugh
 Durham
- Carlos Frenk
 Durham
 - + other members GALFORM team

Dust Modelling (GRASIL):

Alessandro Bressan Padova

Trieste

- Gian Luigi Granato
- Laura Silva
 Trieste

SMG observational comparisons

• Mark Swinbank + Ian Smail Durham

HIERARCHICAL GALAXY FORMATION

Physical ingredients in semi-analytical models

- Assembly of dark matter halos
- Shock-heating and radiative cooling of gas within halos
- Star formation
- Feedback from supernovae & AGN
- Production of heavy elements
- Galaxy mergers
- Stellar populations
- Dust absorption & emission

Assembly of dark matter halos: Merger trees

- 2 approaches:
- Monte Carlo based on (analytical) conditional Press-Schechter mass function

OR

- Extract from N-body simulations
- very similar results from both approaches

24/06/08

Shock-Heating & cooling of gas in halos

- Infalling gas all shockheated to T_{vir}
- Radiative cooling of gas from static spherical distribution
- Disk size related to angular momentum of gas which cools

Star formation & feedback

stars form in disks

$$SFR = M_{gas} / \tau_*$$

supernova feedback ejects gas from galaxies

$$\dot{M}_{eject} = \beta(V_c) SFR$$

24/06/08

Galaxy mergers & morphology

- halos merge
- galaxies merge by dynamical friction
- major mergers make galactic spheroids from disks
- mergers trigger
 starbursts
- spheroids can grow new disks

Modelling galaxy SEDs with dust

- dust in diffuse medium and molecular clouds
- stars form in clouds and leak out
- radiative transfer of starlight through dust distribution
- physical dust grain model
- heating of dust grains -> dust temperature distribution
- IR/sub-mm emission from grains w distrib of size & T

^{24/06/08} GRASIL: Silva et al 1998, Granato et al 2000, Vega et al 2005

SEDs with dust

- dust grain model chosen to reproduce local ISM
- assume dust/gas proportional to gas metallicity
- optical depth for dust depends on both dust mass and galaxy radius
- self-consistent calcn of dust extinction & emission
- model predicts range of extinctions for stars
- mean extinction depends on stellar age
- also range of dust temperatures in same galaxy 24/06/08 Cedric Lacey 11

Model for radio emission

(Bressan, Silva & Granato 2002)

Free-free radiation from HII regions ionized by young stars

$$L_{v,free-free} \propto \dot{N}_{Lyc} v^{-0.1}$$

 Synchrotron radiation from relativistic electrons accelerated in supernova remnants – assume const frac of SN energy radiated

$$L_{\nu,sync} \propto \dot{N}_{SN} \nu^{-\alpha} \qquad \alpha \approx 0.8$$

24/06/08

Example SEDs of galaxies from CDM model

Model SEDs compared to observations

M51 (spiral)

 GRASIL model can reproduce observed SEDs of local galaxies (Silva etal 1998, Bressan etal 2002) 14

Modelling approach

- Galaxy formation is complicated
- Large range of physical processes
- Many parameters in model
- Therefore essential to compare model to wide range of observational data to constrain parameters
- Just fitting e.g. optical LF is not enough!

Sub-mm galaxies (SMGs)

- popn seen in faint sub-mm surveys
- SMGs seem to be dust-enshrouded starbursts at z ~ 1-3

• SHADES 850µm survey of Subaru-XMM Deep Field (20 arcmin dia)

• ~ 60 sources detected down to S ~ 5 mJy

24/06/08

Sub-mm galaxies - why are they important?

- IF assume normal IMF, then implied SFRs ~ 1000 Mo/yr for S ~ 5 mJy @ z~2 - highest SFR objs in high-z universe
- Assuming fainter SMGs have similar z's to brighter ones, total SFR density @ z~1-3 dominates that of optically-detected populations (i.e. Lyman-break gals) if NO dust extinction correction
- So SMGs impt globally & appear to dominate at high SFRs

24/06/08

Cosmic SFR history including SMGs

Baugh et al (2005) model

(Baugh et al 2005, Lacey et al 2007)

- Version of GALFORM, no AGN feedback
- Starting point was model which reproduced wide range of properties for present-day galaxies, using standard IMF
- But this failed to reproduce numbers of main populations of star-forming galaxies at high-z:
 - Sub-mm galaxies (SMGs) at z~2
 - Lyman-break galaxies (LBGs) at z~3-6

Solution - a variable IMF?

• Normal IMF in star-forming disks

 $dN/d\ln m \propto m^{-x}$

- with x=0.4 for m < Mo, x=1.5 for m >Mo (Kennicutt 1983)
- c.f x=1.35 for Salpeter
- Top-heavy IMF in bursts triggered by mergers $dN/d\ln m \propto m^0$
 - Increases both stellar luminosities & chemical yields by ~ 5x

Normal vs top-heavy IMF

24/06/08

21

Why a top-heavy IMF? (a) Sub-mm source counts

Sub-mm counts too low by factor ~50 for normal IMF

22

Redshifts of sub-mm galaxies

Model with top-heavy IMF predicts median $z\sim2$ for S(850) > 5mJy

24/06/08

Why a top-heavy IMF? (b) Lyman-break galaxies

normal IMF

top-heavy IMF

LBGs too faint for normal IMF, once include dust extinction

- So model works for SMGs & LBGs at high-z
- But what about properties of presentday galaxies?

Present-day galaxy luminosity functions in near-IR & far-IR

24/06/08

Gas fractions in disks

24/06/08

Metallicities of stars & gas

Correct metallicities using yields predicted by stellar evolution + IMF - yield NOT adjustable parameter 28

Galaxy disk sizes

Comparison with SDSS data (see Juan's talk)

24/06/08

Detailed comparison of predicted SMG properties with observations

Swinbank etal (2008)

- Model parameters chosen to reproduce SMG number counts
- But do other predicted properties agree with observations?
- Use Chapman et al (2005) sample with spec z's & joint sub-mm (850 μm) & radio (1.4 GHz) selection: S₈₅₀>5 mJy & S_{1.4}>30 μJy

Normalization of radio emission in models

Normalize synchrotron radio emission in model to match radio-FIR reln for local ULIRGs

Cedric Lacey

Redshift distributions with & without radio selection

Slightly lower median z for sub-mm+radio selection c.f pure sub-mm selection - consistent with obs

Bolometric luminosities & SFRs

- Model SMGs selected this way have $L_{bol} \sim 2 \ge 10^{12} \text{ Lo}$
- For Salpeter (x=1.35, m=0.1-100 Mo) IMF, wd require

SFR ~ 1000 Mo/yr

 BUT with top-heavy (x=0) IMF produce this with

SFR ~ 100 Mo/yr

Radio/sub-mm flux ratios

24/06/08

FIR/sub-mm dust SED & T_{dust}

S(350µm)/S(850µm)

S(850µm)/S(1200µm)

- 350/850 & 850/1200 ratios consistent with obs
- model FIR SEDs well fit by modified Blackbody w β =1.5 => EFFECTIVE dust temperature T_d~30K

24/06/08

Gas masses

- Model SMGs with S>5mJy have total $M_{gas} = 3.4 (+2.7,-1.7) \times 10^{10} Mo \text{ (median)}$
- In good agreement with obs from CO $M_{gas} = 3.0 (+/-1.6) \times 10^{10} Mo$

(Greve etal 2005, Tacconi etal 2008)

- Assuming standard conversion for ULIRGs: $M(H_2+He)/L_{CO} = 0.8 \text{ Mo} (\text{K kms}^{-1} \text{ pc}^{-2})^{-1}$

Velocity widths

Halo masses & clustering

- Models predict S>5mJy SMGs hosted by DM halos with
 - $M_{halo} = 4 (+6,-2) \times 10^{12} Mo$ (median)
- In ΛCDM, such halos @ z~2 have bias b ~ 2, so predict clustering length r₀= 8 Mpc for SMGs
- In excellent agreement with Blain etal 2005 obs estimate from pairs in N(z): r₀=10 (+/- 3) Mpc

Rest-frame UV properties

- Model SMGs with 0.9<z<3.5 have B~24.0, R~23.9 (AB)
- C.f. obs B~24.8, R~24.3
- i.e. similar, but model SMGs slightly brighter & bluer - too little dust extinction?
- ~60% model SMGs have colours of BX/BM gals - similar to obs

Rest-frame optical & NIR Iuminosities

- model predicts K-band fluxes too low by 6x
- 5.8 μ m too low by 10x serious problem !!

24/06/08

NIR luminosities & stellar masses

- NIR luminosities too low because too few post-MS m~2-3 Mo stars
- related to predicted stellar masses: M_{star}~ 2 (-1,+3) x10¹⁰ Mo
- These are ~ 10x lower than obs estimates assuming standard IMF (Borys etal 2005)
- But since IMF varying, comparison via obs 5.8μm fluxes much more robust

Could this be problem in stellar evolution models?

- Maraston (1998,2005) finds that improved modelling of TP-AGB stars leads to increased NIR luminosities compared to standard models (e.g. BC03), for SSP ages ~ 0.1-1 Gyr
- Have checked effect of using Maraston SSPs
 increases 5.8μm fluxes of model SMGs by
 only ~ 20%
- Does not solve problem of low NIR L's

What about AGN feedback?

- Bower etal (2006) model with AGN feedback and standard IMF seems in better agreement with "observed" stellar mass function to z~4 (inferred from obs assuming solar nhd IMF)
- But underpredicts counts of SMGs by factor 30x

SMG number counts in standard Bower 06 model

SMG counts 30x too low at S ~ 5 mJy

- Seems to be contradiction between observationally-inferred SFRs & stellar masses when assume standard IMF throughout
- What if add top-heavy IMF in bursts to AGN feedback model?

Bower 06 model + x=0.85 IMF in bursts

AGN feedback + top-heavy IMF gives good fit to SMG counts

Bower 06 model + x=0.85 IMF in bursts

Redshift distribution of SMGs too broad c.f. obs

24/06/08

Stellar metallicities in Bower 06 model

Standard IMF

x=0.85 IMF in bursts gives better agreement with observed metallicities (using yields from stellar evoln)

24/06/08

K-band LF in Bower 06 model

Standard IMF

x=0.85 IMF in bursts

But x=0.85 IMF in bursts makes fit to z=0 K-band LF worse!

24/06/08

Complicated interplay between different physical processes in model & different observational constraints

- Hard work finding model which satisfies all constraints!
- Search for improved model still underway....

Conclusions

- Model with top-heavy IMF in bursts reproduces many observed properties of SMGs: number counts, redshifts, dust SED shapes, gas masses, velocity widths, clustering length
- But predicts rest-frame NIR luminosities (& stellar masses) 10x too small
- Model combining AGN feedback + milder topheavy IMF shows promise for reconciling these constraints - but no fully satisfactory model yet!