

Modelling suppression of galaxy formation due to a UV-background Takashi Okamoto Liang Gao Tom Theuns

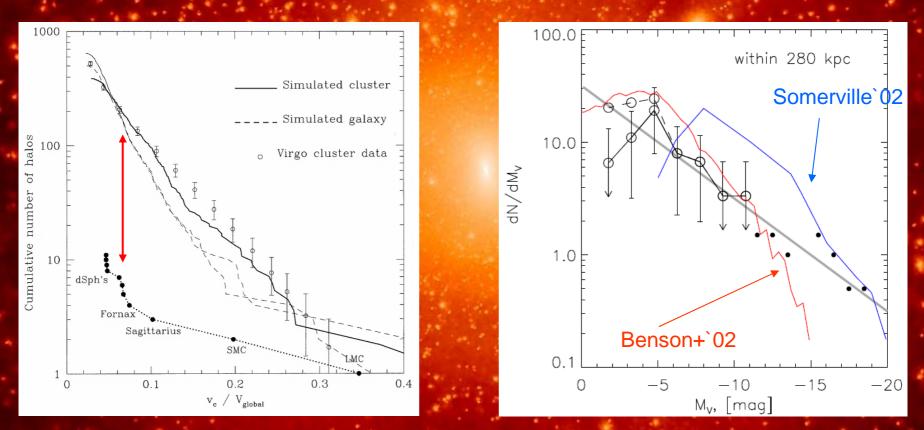
Institute for Computational Cosmology

Birmingham June 08

A photo-ionizing background suppresses dwarf galaxy formation

準備完了

00:01


Simulation by Rob Crain

It might save CDM

Satellite problem

Moore+`99

LF of MW satellites

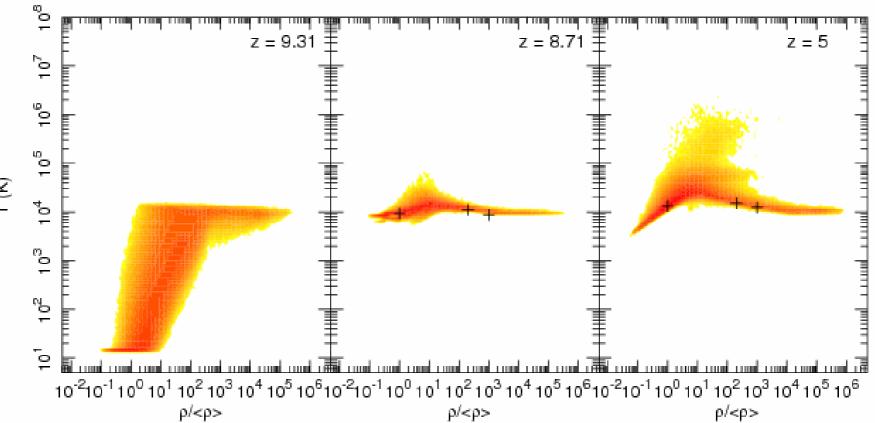
Koposov+`08

The filtering mass

• Growth of density fluctuation in the gas is suppressed for $k > k_F$ (Gnedin & Hui`98).

$$\begin{aligned} \frac{1}{k_{\rm F}^{\,2}(t)} &= \frac{1}{D(t)} \int_0^t \mathrm{d}t' \frac{\ddot{D}(t') + 2H(t')\dot{D}(t')}{k_{\rm J}^2(t')} \int_{t'}^t \frac{\mathrm{d}t''}{a^2(t'')} \,. \end{aligned}$$
where $k_{\rm J} \equiv \frac{a}{c_{\rm s}} (4\pi G \langle \rho_{\rm tot} \rangle)^{1/2}$ and $c_{\rm s} = \left(\frac{5}{3} \frac{k_{\rm B} T_0}{\mu m_{\rm p}}\right)^{\frac{1}{2}}$

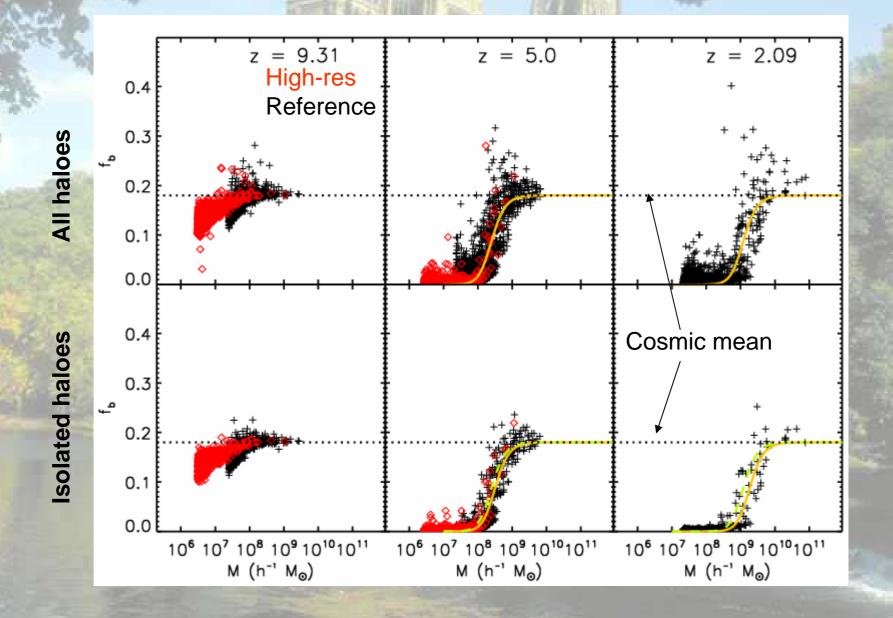
$$M_{\rm F} = \frac{4\pi}{3} \langle \rho_{\rm tot} \rangle \left(\frac{2\pi a}{k_{\rm F}}\right)^3$$

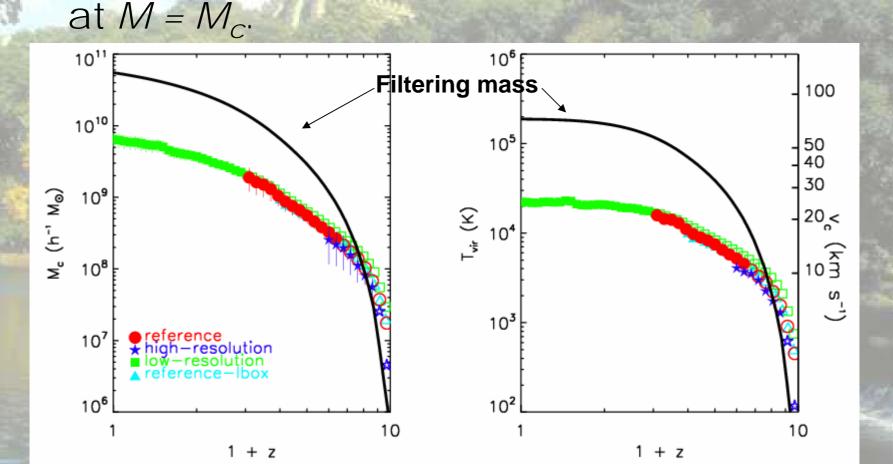

- Gnedin 02 claimed that M_F agrees with the characteristic mass, M_c, below which galaxy formation is strongly suppressed.
- But Hoeft+`06 suggested that M_F significantly overestimates M_C.

This work

 High-resolution cosmological hydrodynamic simulations with a timeevolving, spatially uniform UVbackground.

- Reionization occurs at z = 9.
- Haardt & Madau `01 UV-background
- Constructing a semi-analytic model that can reproduce simulation results.


Simulation


Phase diagram: Reionization occurs at z = 9. Plus sins indicate equilibrium temperatures at $\Delta = \rho / \langle \rho \rangle = 1, 200, \text{ and } 1000.$

(K)

Baryon fraction of simulated haloes

• A fitting function by Gnedin`00 $f_{\rm b}(M,z) = \langle f_{\rm b} \rangle \left\{ 1 + (2^{\alpha/3} - 1) \left(\frac{M}{M_{\rm c}(z)} \right)^{-\alpha} \right\}^{-\frac{3}{\alpha}}$ • The baryon fraction is half the cosmic mean

Modelling the accretion and evaporation of photo-ionized

gas

Semi-analytic modelling

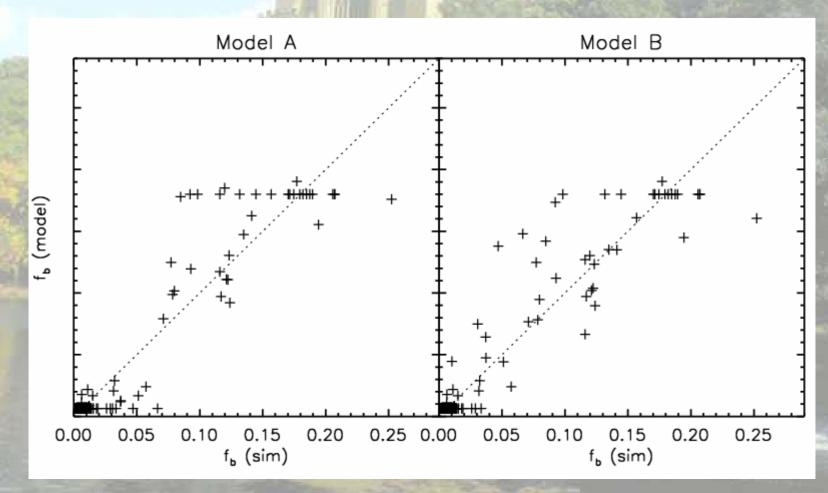
- 1. Constructing merger trees from the simulations
- 2. Before reionization, each halo has the cosmic mean baryon fraction.
 - $f_{\rm b} \equiv \frac{M_{\rm b}}{M_{\rm DM} + M_{\rm b}} = \langle f_{\rm b} \rangle \equiv \frac{\Omega_{\rm b}}{\Omega_0}$

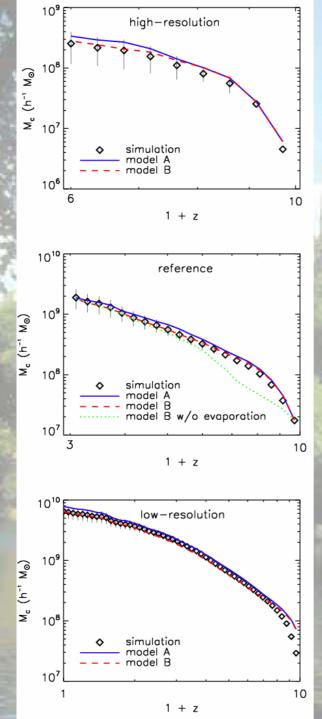
Gas accretion

- After reionization, IGM temperature is a function of density (or overdensity, Δ=ρ/<ρ>), i.e. T_{acc} = T_{eq}(Δ_{acc}).
 If T_{acc} < T_{vir}, gas can accrete to the halo, i.e.
 - If I acc < I vir, gas can accrete to the halo, i.e.</p>
 f_b = <f_b >
 - If T_{acc} > T_{vir}, gas cannot accrete; the baryon mass is the sum of the baryon mass in its progenitor haloes.

$$M_{\rm b} = \sum^{\rm prog} M_{\rm b}$$

Photo-evaporation


If T_{eq}(Δ_{cond}) > T_{vir} where Δ_{cond} >> Δ_{vir}, condensed gas can escape from the halo with a timescale t_{evp} = r_{vir}/C_s(Δ_{cond}).
 The baryon mass, M_b, is reduced to M_b' during a timestep δt.


$$M'_{\rm b} = \exp\left(-\frac{\delta t}{t_{\rm evp}}\right) M_{\rm b}.$$

• We use $\Delta_{\text{cond}} = 10^6$.

Models against a simulation

• Model A: $\Delta_{acc} = 1/3 \Delta_{vir}$ • Model B: $\Delta_{acc} = f(f_b) \Delta_{vir}$ (a function of f_b)

M_c predicted by the models

- Model A is good enough.
- Model B reproduces the simulations perfectly.
- Evaporation is important at high-z.

Summary

- Gas cannot accrete to a halo if it's hotter than halo's virial temperature.
- The overdensity of accreting gas is well approximated by $1/3 \Delta_{vir}$.
- The filtering mass significantly overestimates the effect of a UVbackground.
 - SA models have overestimated the effect...
 - The satellite problem might still exist.
 - Use our model!!

Appendix

Model B

- If less baryons are brought by progenitors, more gas is available for accretion.
- It may increase the density of the accreting gas.

$$M_{\rm b}^{\rm max} = \frac{\langle f_{\rm b} \rangle}{1 - \langle f_{\rm b} \rangle} M_{\rm DM}$$

$$M_{\rm acc} = M_{\rm b}^{\rm max} - \sum^{\rm prog} M_{\rm b}$$

$$\Delta_{\rm acc} = \beta \frac{M_{\rm acc}}{M_{\rm b}^{\rm max}} \Delta_{\rm vir}$$
= 2/3 works well.