Andrew Pontzen (loA Cambridge)

apontzen@ast.cam.ac.uk

Pontzen+ 08 MNRAS, Accepted arXiv:0804.4474 Pontzen & Pettini 08 In Prep. In Prep.

Andrew Pontzen (loA Cambridge)

apontzen@ast.cam.ac.uk

Pontzen+ 08 MNRAS, Accepted arXiv:0804.4474 Pontzen & Pettini 08 In Prep. In Prep.

Prescriptions

Parameterisation

Parameters

Prescriptions

Parameterisation

Parameters

Governato et al 2007

Forming Disk Galaxies in Λ CDM Simulations

F. Governato^{1,2}, B. Willman³, L. Mayer⁴, A. Brooks¹, G.Stinson¹, O.Valenzuela¹, J.Wadsley⁵, T.Quinn¹

¹Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA
²INAF, Osservatorio Astronomico di Brera, via Brera 29, 20121, Milano, Italy
³NYU, Department of Physics, 4 Washington Place, New York, NY 10003
⁴ETH, Ramistrasse 101, CH-8092 Zurich.
⁵Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L88 4M1, Canada

5 February 2008

ABSTRACT

We used fully cosmological, high resolution N-body + SPH simulations to follow the formation of disk galaxies with rotational velocities between 135 and 270 km/sec in a Λ CDM universe. The simulations include gas cooling, star formation, the effects of a uniform UV background and a physically motivated description of feedback from supernovae. The host dark matter halos have a spin and last major merger redshift typical of galaxy sized halos as measured in recent large scale N–Body simulations. The simulated galaxies form rotationally supported disks with realistic exponential scale lengths and fall on both the I-band and baryonic Tully Fisher relations. An extended stellar disk forms inside the Milky Way sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Our

The Simulations...

- N: Cosmological UV (thin + RT post-process)
 - Single-parameter supernova feedback (Stinson et al 2006)
 - Tuned to produce realistic z=0 SFRs
 - High resolution (down to 10⁴ solar masses)

The Simulations...

- **IN:** Cosmological UV (thin + RT post-process)
 - Single-parameter supernova feedback (Stinson et al 2006)
 - Tuned to produce realistic z=0 SFRs
 - High resolution (down to 10⁴ solar masses)
- OUT: Land on Tully-Fisher relation (lum vs v_{rot})
 - Realistic LF (inc. distribution of MW satellites)
 - But watch out: exaggerated bulges = declining rotation curves
 - Stellar Mass-Metallicity relation sensible for 0<z<3 (Brooks et al 2006)

Rendering by SimAn: real-time OpenGL / python simulation analysis environment www.ast.cam.ac.uk/~app26/siman

Column Density Distribution

Column Density Distribution

Success, with no free parameters!

Observational data = SDSS DR5 (Prochaska et al)

Metallicity Distribution

Previous simulations struggle here (out by factors of 5 to 10)

This is a strong joint constraint on DLAs & SF

Observational data = HIRES/UVES compilation (Prochaska, pri. comm.)

Velocity/Metallicity Correlation

after Ledoux et al 2006

Discrepancy due to velocity width underestimation

> Trend in excellent agreement

Observational data = HIRES/UVES compilation (Prochaska, pri. comm.)

Why the success?

- Cross-section from intermediate mass halos (~10¹⁰ solar mass)
- Adopted feedback is extremely efficient at suppressing SF in these halos (→ low metallicity)
- Tested weaker feedback: gives much higher metallicities, mass-metallicity relation is lost
- Feedback has little effect on kinematics (shame)

Conclusions

- First study of DLAs in simulation with realistic z=0 galaxies. No free parameters.
- DLAs associated with 10⁹<M/M_☉<10¹¹ halos. Not all disky (cf SAMs Johansson & Efstathiou etc).
- Successes:
 - cosmological column density distribution
 - metallicity distribution + low SFRs
 - metallicity vs velocity width
- Next step: time evolution & detailed SAMs comparison...

Andrew Pontzen, IoA Cambridge; *apontzen@ast.cam.ac.uk* arXiv:0804.4474