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= Intergalactic medium compressed & shock
heated to virial temperature in dark matter halos

« gasT ~ 10’-10°K => kT ~ 1-10 keV (X-rays)

hot gas typically:
en_~ 107 cm?

e Z ~ 0.3 Solar

Abell 2029 cluster

Hot gas (T ~ 10-100 million K) Thousands of individual galaxies
[~12% of total mass]v [~3% of total mass]

:I'I(\)/Itz?l cilglszltfrlrggsl\ies: Held together by dark matter

sun [~85% of total mass]



Why is the ICM important in

semi-analytic models?

= The hot intracluster medium (ICM) serves as a reservoir
of baryons:

> 3-5 times more mass in gas than in stars
> Cooling gas fuels black hole growth and star formation

= The hot gas can influence galaxies:
> e.g. ram pressure stripping
= |CM very sensitive to galaxy feedback:

> Non-gravitational processes modify gas entropy & break
cluster self-similarity - the same mechanisms that restrict
star formation in galaxies

> Gas metallicity probes supernova-driven galaxy winds

= X-ray observations of the hot gas are a powerful probe
of feedback & an additional constraint on SAMs



Gas temperature profiles:

cool-core vs. non-cool core

= Statistical sample of 20
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= CC clusters have v. similar T(r)

> CC tend to be more “relaxed”
and better studied
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= Distinction often made in terms
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The importance of radiative

cooling on the hot gas
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= Cooling time of gas vs. scaled
radius (R/R_ )

= Inside T(r) peak (r ~0.15 R
t << Hubble time
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= ~“Universal” cooling time
profile? (i.e. small scatter)
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> cooling very important
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= Even non-cool core clusters Radius (Rsoo
have very short cooling

. Sanderson et al., 2006
times....so Why no cool core? ﬁ



Gas entropy profiles:

cool-core vs. non-cool core

= Gas entropy, S = kT / p??
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= Empirical scaling by kT°
(Ponman et al. 2003)

> Confirms non self-similar
scaling, even outside of core

= Cool core clusters show
~power-law S(r) at all radii
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Cluster gas metallicity

profiles (projected)

Wide dispersion

from Grevesse l.e. ~2x size of
central galaxy
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= Both Cool-Core and Non-Cool Core clusters show declining
Z(r) outside inner core (R ~ 0.03 R_ )
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= Some (CC) clusters show sharp central Z decline - feedback
and/or cooling removing enriched gas?



What about galaxy groups?

(1.e. low mass halos)

= Flux-selected sample biased towards
massive objects...

But, groups dominate mass function, and
massive clusters are rare in simulations

= Also, groups are more sensitive to non-
gravitational heating as less massive

=> groups provide better constraints on
galaxy feedback



Gas temperature profiles:

groups vs. clusters
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= +14 galaxy groups
(archive sample)

= Cluster T(r) ~bimodal
> CCpeak ~0.15R_ |

= Groups much more
diverse

> Varying peak T(r),
but Rpeak < clus.

> Flatter, more
variable log slope

Locally-weighted fits
(i.e. smoothed)
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Gas density profiles:

groups vs. clusters

= Cluster pgas(r) very
diverse within core

> Diverge < 0.3 R_

> Flatten in core

= Groups have more
uniform core p_ (r)

gas

> ~power-law, with
similar slope

> Gas density more
cuspy than clusters

Locally-weighted fits
(i.e. smoothed)
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Cluster gas density profiles

trends with mean temperature
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What can account for the

diversity Iin groups?

Important clue in the systematic variation
of group temperature profiles...



The shapes of group scaled

temperature profiles

T(r) /| mean kT vs. scaled radius; axes scaled identically
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Systematic trend Iin group

temperature profiles
...Increasing metallicity! v—f

Cool-Core
MNon-Cool Core

3.0 1.5 -3.0 15 3.0 1.5
[ R T A A I O Y B A A B B B BN B R A NI A N A A B A I I A A A
hoga2 nEA3A mkw4s n533 MS1157 hoga? RXCJ1320
0.2 — —
0.0 - V/\ /‘/\ /\_\ _/\ B
—_ 0.2 - =
8 0.4 —
|_E e Z=0077 =017 Z =017 F =019 Z =023 Z =028 Z =029
S
= n1550 n507 n4626 n4325 mkwd USGCS152 NBEEE
=
= — — 0.2
K
- /m - 0.2
S =073 =038 =039 =049 =05 g =098 f=14 - 04
| I 1 1T 1 1 I 1 1 I 11 11 7 1 1 1 1 11 |
-3.0 1.5 —3.0 1.5 -30 1.5 -3.0 1.5
|':'Q1D(HJ" Hsuu)

Mean metallicity measured 0.15-0.2 R

500

(i.e. core-excluded)



Group T(r) diversity

correlates with metallicity

= Group temperature profiles become flatter, with
narrower peak-to-trough range as the gas metallicity
rises (measured 0.15-0.2 R__)

> Flatter T(r) caused by SN heating, which also enriches the gas?
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> Or, flatter T(r) caused by AGN heating, which also lifts enriched
gas outwards (Z usually higher in core)?

> Hotter core more easily disrupted by outflows, which carry
enriched gas?

= No such trend between T(r) & Z is evident in clusters

> ...and cluster T(r) less diverse than in groups

> Larger cluster potential means T(r) more resistant to supernova
heating and feedback in general



Summary

Dichotomy in cluster population: cool core vs. non-cool core
(roughly equal occurrence)

> Very obvious in gas T(r), p(r) and entropy within cooling radius
(r_., ~ 100-300 kpc)

> But, CC & NCC metallicity profiles very similar, outside ~50 kpc
= Gas cooling very important in groups & clusters

> Even non-cool core systems have t << Hubble time

= Galaxy group properties more diverse than clusters; more
sensitive to feedback

> Flatter T(r) in core, with wider range of slopes than clusters
> CC T(r) flattens with increasing gas metallicity (outside core)

= Clusters & groups are not self-similar

> Need AGN feedback to match inner core properties, but
supernova feedback may also be important in groups
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