X-ray observations of the intracluster medium: implications for semi-analytic models

Alastair Sanderson The University of Birmingham

In collaboration with Ewan O'Sullivan (CfA), Trevor Ponman (B'ham)

Hot gas in groups & clusters

- Intergalactic medium compressed & shock heated to virial temperature in dark matter halos
 - gas $T \sim 10^7 10^8$ K => $kT \sim 1 10$ keV (X-rays)

Hot gas (T ~ 10-100 million K) Thousands of individual galaxies [~12% of total mass] / [~3% of total mass]

Total cluster masses: $M \sim 10^{14} - 10^{15} M_{sun}$

Held together by dark matter [~85% of total mass]

Why is the ICM important in semi-analytic models?

- The hot intracluster medium (ICM) serves as a reservoir of baryons:
 - 3-5 times more mass in gas than in stars
 - Cooling gas fuels black hole growth and star formation
- The hot gas can influence galaxies:
 - → e.g. ram pressure stripping
- ICM very sensitive to galaxy feedback:
 - Non-gravitational processes modify gas entropy & break cluster self-similarity - the same mechanisms that restrict star formation in galaxies
 - Gas metallicity probes supernova-driven galaxy winds
- X-ray observations of the hot gas are a powerful probe of feedback & an additional constraint on SAMs

Gas temperature profiles: cool-core vs. non-cool core

- Statistical sample of 20 clusters; Chandra data, T(r) normalized by mean T
- Two distinct classes:
 - Cool-core and non-cool core, in roughly equal proportion
- CC clusters have v. similar T(r)
 - CC tend to be more "relaxed" and better studied
 - Non-CC often regarded as disturbed or anomalous; rarely seen in cosmological simulations
- Distinction often made in terms of *cooling time*...

Sanderson et al., 2006

The importance of radiative cooling on the hot gas

< 3-5 Gyr in

cases

- Cooling time of gas vs. scaled radius (R / R₅₀₀)
- Inside T(r) peak (r ~0.15 R₅₀₀)
 $t_{cool} <<$ Hubble time
- ~"Universal" cooling time profile? (i.e. small scatter)
 - cooling very important
- Even non-cool core clusters have very short cooling times....so why no cool core?

Gas entropy profiles: cool-core vs. non-cool core

- Gas entropy, $S = kT / \rho^{2/3}$ v. sensitive to non-grav. processes
- Empirical scaling by kT^{0.65} (Ponman et al. 2003)
 - Confirms *non* self-similar scaling, *even outside of core*
- Cool core clusters show
 ~power-law S(r) at all radii
 - → T(r) peak not obvious
- Wide dispersion in core entropy within cooling radius
 - Non-CC clusters have high entropy cores: feedback / cooling

Sanderson et al, in prep.

Cluster gas metallicity profiles (projected)

NB Abundances from Grevesse & Sauval, 1998

- Both Cool-Core and Non-Cool Core clusters show declining Z(r) outside inner core (R ~ 0.03 R₅₀₀)
- Some (CC) clusters show sharp central Z decline feedback and/or cooling removing enriched gas?

What about galaxy groups? (i.e. low mass halos)

- Flux-selected sample biased towards massive objects...
- But, groups dominate mass function, and massive clusters are rare in simulations
- Also, groups are more sensitive to nongravitational heating as less massive
- => groups provide better constraints on galaxy feedback

Gas temperature profiles: groups vs. clusters

- +14 galaxy groups (archive sample)
- Cluster T(r) ~bimodal
 - → CC peak ~0.15 R₅₀₀
- Groups much more diverse
 - → Varying peak T(r), but R_{peak} < clus.
 - Flatter, more variable log slope

Locally-weighted fits (i.e. smoothed)

Gas density profiles: groups vs. clusters

- Cluster $\rho_{gas}(r)$ very diverse within core
 - → Diverge < 0.3 R₅₀₀
 - Flatten in core
- Groups have more uniform core $\rho_{qas}(r)$
 - ~power-law, with similar slope
 - Gas density more cuspy than clusters

Locally-weighted fits (i.e. smoothed)

Cluster gas density profiles trends with mean temperature

- ρ_{gas}(r) lower in cooler
 clusters => depletion
 of gas
 - Expulsion to outskirts
 - Condense out of hot phase to form stars
- Density higher in coolcore clusters
 - → ρ_{gas} rises as T falls to maintain pressure balance

Locally-weighted fits (i.e. smoothed)

What can account for the diversity in groups?

Important clue in the systematic variation of group temperature profiles...

The *shapes* of group scaled temperature profiles

T(r) / mean kT vs. scaled radius; axes scaled identically

Systematic trend in group temperature profiles

...Increasing metallicity!

Mean metallicity measured 0.15-0.2 R₅₀₀ (i.e. core-excluded)

Group T(r) diversity correlates with metallicity

- Group temperature profiles become flatter, with narrower peak-to-trough range as the gas metallicity rises (measured 0.15-0.2 R₅₀₀)
 - → Flatter *T*(*r*) caused by SN heating, which also enriches the gas?
 - Or, flatter T(r) caused by AGN heating, which also lifts enriched gas outwards (Z usually higher in core)?
 - Hotter core more easily disrupted by outflows, which carry enriched gas?
- No such trend between T(r) & Z is evident in clusters
 - → ...and cluster *T*(*r*) less diverse than in groups
 - Larger cluster potential means T(r) more resistant to supernova heating and feedback in general

Summary

- Dichotomy in cluster population: cool core vs. non-cool core (roughly equal occurrence)
 - Very obvious in gas T(r), $\rho(r)$ and entropy within cooling radius $(r_{cool} \sim 100-300 \text{ kpc})$
 - → But, CC & NCC metallicity profiles very similar, outside ~50 kpc
- Gas cooling very important in groups & clusters
 - → Even non-cool core systems have t_{cool} << Hubble time
- Galaxy group properties more diverse than clusters; more sensitive to feedback
 - → Flatter *T*(*r*) in core, with wider range of slopes than clusters
 - → CC T(r) flattens with increasing gas metallicity (outside core)
- Clusters & groups are not self-similar
 - Need AGN feedback to match inner core properties, but supernova feedback may also be important in groups