Southampton

School of Physics and Astronomy

Galaxy-scale radio-loud AGN outflows

Judith Croston 28th September 2010 AGN: populations, parameters & power Birmingham 2010

School of Physics and Astronomy

Thanks:

Ralph Kraft, Martin Hardcastle, Beatriz Mingo, Jamie Ownsworth, Preeti Kharb, Ananda Hota, Dan Evans & the Cen A VLP collaboration

What's special about galaxy-scale sources?

- Two types of galaxy-scale source:
 - early phase in the life of a full-sized radio galaxy
 - short-lived outbursts that never evolve to hundred-kpc scales
- Strong shocks **are** seen in a few nearby "galaxy-scale" sources (e.g. Kraft et al. 2003; Croston et al. 2007, 2009; Mingo et al. 2010)
- CSS samples dominated by FRIIs at high z (e.g. O'Dea 1998) => evidence that shocks are important in ionizing emission-line gas (e.g. Holt et al. 2008)

Shocks & radio source evolution

- All large radio galaxies must evolve through phase of supersonic expansion
 => shock heating of environment
- Signatures potentially visible in the X-ray (e.g. Heinz, Reynolds & Begelman 1998) => direct measurement of energy input to environment.
- Chandra has failed to find clear evidence for strong shocks around powerful RGs (though more examples of moderately strong shocks are emerging...)

School of Physics and Astronomy

The impact of kpc-scale radio galaxies

High-energy particle acceleration

X-ray synchrotron emission at the shock front in Cen A (Croston et al. 2009)

X-ray synchrotron emission from SN1006 (Rothenflug et al. 2004)

B field amplification?

- SNR shells inferred to have *B* fields >> simple compression of the ISM (e.g. Ellison & Vladimirov 2008, Reynolds 2008)
- Modelled as non-linear diffusive shock acceleration with *B* amplification (e.g. Bell & Lucek 2001).
- *B*-field amplification by factors of 10 100 plausible in Cen A ($B_{eq} \sim 8 \ \mu G$ for κ =1 and ~30 μG for κ =100). HESS detection implies B > 7 μG .

Shock heating of the ISM

- Non-thermal model ruled out (strong Fe L complex).
- *M* ~ 3 4 & expansion speed comparable to inner region of Cen A where no particle acceleration seen.
- $E_{TOT} \sim 2 \ge 10^{56}$ ergs, equiv. to thermal energy of ISM within 11 kpc – similar to Cen A energetics.

Preliminary statistics

- 25 galaxy-scale sources found from parent population of 103,000
- Luminosities of $10^{20} 10^{23} \text{ W Hz}^{-1}$
- Mainly hosted by luminous, red galaxies
- 2/25 show visible merger signatures (comparable to normal E population)
- Environments appear systematically richer than parent population (work in progress)
- Galaxy-scale sources are common in massive, red ellipticals (~1/200), but rare in galaxy population as a whole

m-5loah

Southampton

School of Physics and Astronomy

AGN-driven radio outflows in Seyferts

AGN-driven outflows in Seyferts

Disruption of weak jets in a dense environment

- Hot gas associated with the radio bubbles in NGC6764, with hottest region coincident with inner, bright collimated outflow.
- Shock signatures at outflow edge.
- Weak jet disrupted in galaxy bulge? (e.g. Sutherland & Bicknell 2007)

More shock heating in Seyfert radio outflows...

Shocked shells associated with a Seyfert outflow

- Shocked gas: $\mathcal{M} \sim 3.9$, T ~0.9 keV, T_{ISM} ~0.2 keV
- Distributed round the edges of the bubbles (like NGC 3801 & Cen A) rather than inside (like the other Seyfert outflows).
- A more power radio outflow interacting with a less gas-rich host galaxy?

Markarian 6 (Mingo et al. 2010, submitted)

Conclusions

- Galaxy-scale radio-loud AGN have a dramatic effect on their host galaxies (not just coupling to group or cluster gas) :
 - shock heating of ISM at bow shock around supersonic radio lobes
 - high-energy particle acceleration at shock front
 - jet disruption, small-scale shocks and entrainment of hot gas
- Small (~1-10 kpc) radio galaxies are hosted by massive ellipticals: probably not important for feedback on their own, but provide clues to energy input during early stages of radio-galaxy evolution
- "Kinetic" energy input in radio-quiet AGN could be significant:
 - Seyfert jets and bubbles can inject considerable energy into ISM
 - Difficult to resolve and/or distinguish from SF
 - What about radio-quiet quasars?