

AGN activity and host galaxy environment

Walter Del Pozzo^{1,2}, Somak Raychaudhury², Arif Babul³

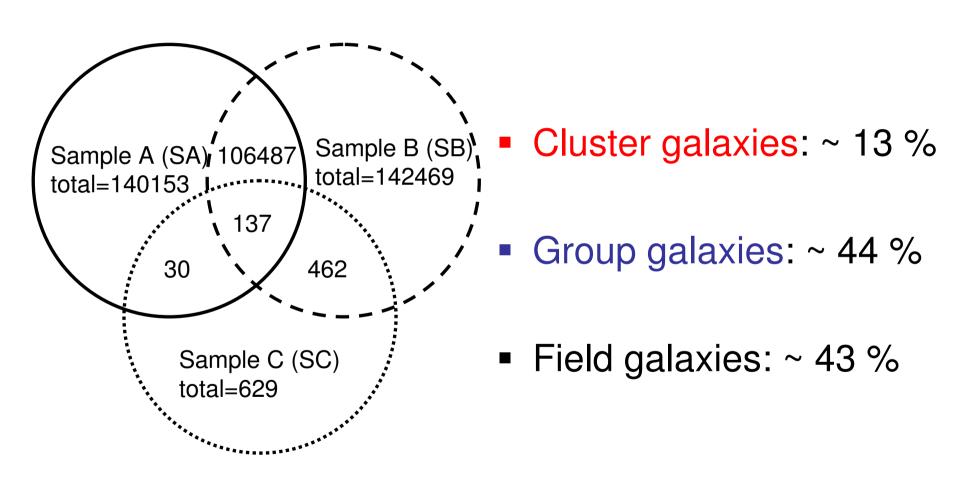
¹NIKHEF, Amsterdam 1098 XG, Netherlands

²School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

³Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada

Motivation

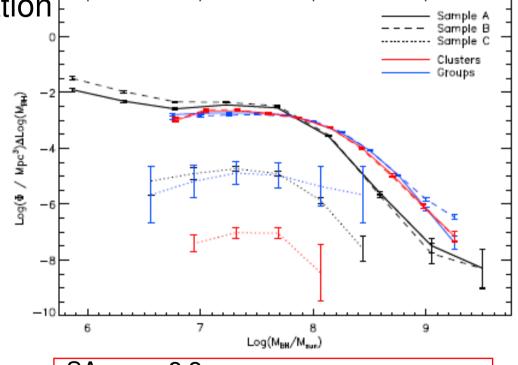
- AGN activity depends on:
 - black hole mass (and spin?)
 - ii. accretion rate
- Environment <u>does</u> affect AGN activity:
 - Optical: e.g. Dressler et al. 1980,1985
 - X ray: e.g. Martini et al. 2005, 2006
 - Radio: e.g. Best et al. 2005, Lin & Mohr 2007
- How is each of the two ingredients affected?


Sample

- Starting from SDSS DR6 we identified all galaxies with r < 17.7 and spectroscopic z < 0.1
 - Sample A (SA): u-r < 2.2 (Strateva et al. 2001);
 - Sample B (SB): R₅₀/R₉₀ < 0.33 (Shimasaku et al. 2001)
 - Sample C (SC): Hα line with: FWHM>1000 km/s
 EW > 30 Å (Greene & Ho 2005)
- Abell et al. 1989: Cluster Catalog
- Berlind et al. 2010: Group Catalog
- All the rest: Field Catalog

W. Del Pozzo

Sample



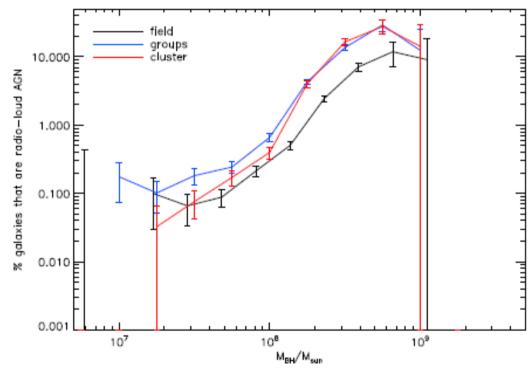
i. Black Hole Mass Function

K band from the 2MASS survey to calibrate an r band

Marconi & Hunt like relation

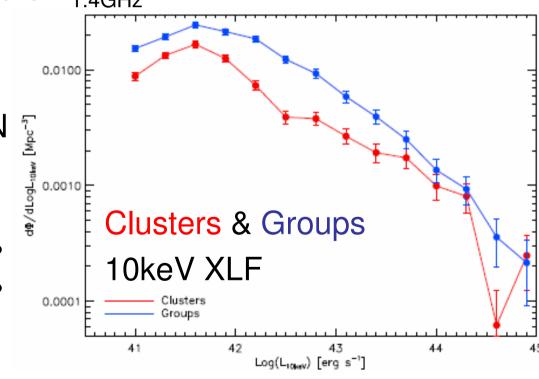
- massive BHs in groups and clusters are more common
- Optical AGN (SC) found in $10^{6.5} < M_{BH}/M_{SUD} < 10^{8.5}$
- SC (optical AGN) is strongly suppressed in clusters.

SA: u-r < 2.2


SB: $R_{50}/R_{90} < 0.33$

SC: $H\alpha$: FWHM>1000 km/s, EW > 30 Å

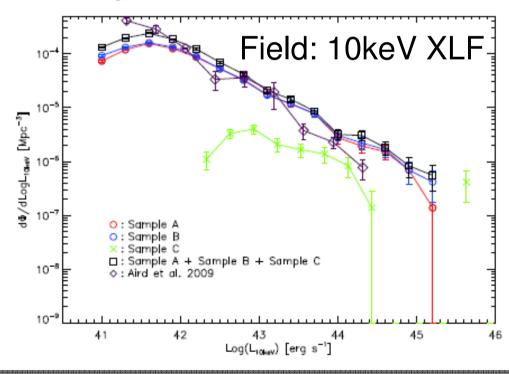
ii. Accretion Rate: Radio Active Fractions (RAF)


- L_{1.4GHz} from the FIRST survey, L_{1.4GHz}>10²³ W Hz⁻¹
- Satellite BHs (dashed lines):
 - the cluster/group RAF ~ 2 RAF field
 - field/group ~ M_{BH}^{1.5}
 - in clusters ~ M_{BH}^{2.3}

ii. Accretion Rate: X ray luminosity function (XLF) and fractions

- BH fundamental plane (e.g. Falcke et al. 2004) in combination with M_{BH} and L_{1.4GHz}
- X ray AGN more common in groups
- Fractions of X ray AGN in agreement with Martini et al. 2007:
 - f(R<-20;Lx>10⁴¹)≈3.5 %
 - f(R<-20;Lx>10⁴²)≈1.5 %

Summary


- massive BHs are more likely to be found in groups and cluster galaxies;
- 2. the cluster environment suppresses optical AGN;
- 3. at fixed BH mass, BHs in groups and clusters have higher RAF compared to field BHs:
 - a. groups $\sim M_{BH}^{1.5}$;
 - b. clusters $\sim M_{BH}^{2.3}$;
- 4. from the BH fundamental plane we expect X ray AGN to be more common in groups than in clusters

ii. Accretion Rate: X ray luminosity function (XLF) and fractions

 BH fundamental plane (e.g. Falcke et al. 2004) in combination with M_{BH} and L_{1.4GHz}

■ In reasonable agreement with the z < 0.1 10keV XLF from Aird et al. 2009

