Is there really any evidence for spin-
powering of jets from black holes

(and, is there really a radio loud : radio _quiet dichotomy in AGN ?)
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Asides on stellar mass black holes and accretion states
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Asides on stellar mass black holes and accretion states

1. Remember this ?
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Core jet emission
suppressed by >30.
Possible strong slow disc
wind ? (Neilsen & Lee)
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No clear 'switch' at any
Eddington ratio.
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In Fender, Belloni & Gallo (2004) we presented a ‘unified’ model for the disc-jet
coupling in black hole X-ray binaries

Six years later..

Empirical couplings demonstrated to be correct in much larger sample:
 Jet always on in hard state

 Jet off or [fading and optically thin] in soft state

* Major outbursts associated with hard — soft state transitions

» Reactivation of jet during return to hard state not well observed

Attempt to extend this to timing properties

 Clearly jets are stronger when variability is stronger

» Approximate but imprecise connection between rapid drops in variability power
and major ejection events

Theoretical interpretation
* Disc radius changes at high Eddington ratios remain controversial - disc could be
varying over small (-10 R ) range (or not). Below about 1% Eddington disc does seem

to recede to larger radii
* Internal shocks model for major outbursts consistent but untested. We need a
measurement of the hard state jet speed.

Fender, Homan & Belloni (2009)



2. A specific point - you do
get states which are
radiatively bright and have a
powerful jet

Q: Which one makes the
powerful jet and which one
doesn't ?

Migliari & Belloni (2003)
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Black hole spin powering of jets: a very attractive idea

* Penrose (69), Christodolou (70) showed that
you can extract up to ~30% of the mass-
energy of a maximally rotating black hole

* Blandford & Znajek (77) ... McKinney (05++)
showed how a disc could allow this energy to

be extracted and to drive a powerful

relativistic jet, as observed from black holes  Frame
of all masses (10 to 10 billion solar masses) %"

* Livio, Ogilvie & Pringle argue that the
power extracted from the spin has been
overestimated and can never exceed the D
power from the accretion disc. McKinney et
al. claim this is not correct in astrophysical B<0
environment and spin should be important

* Essentially all current GRMHD simulations
of relativistic jet formation focus on a B*>0
rotating black hole to produce the most

relativistic jets




Radio loud and radio quiet AGN: a brief history

 Early radio surveys at (relatively) low frequencies and angular resolutions —
appeared to show two separate populations of 'radio loud’ and ‘radio quiet’
AGN (recall masses not well know then). This dichotomy becomes part of the
received wisdom for AGN, is stated without many caveats in textbooks, etc.
This in turn drives much study into the origin of this difference, usually tying
it to the evolution of black hole spin via the merger history etc. Big business.

* In the 2000s, several surveys (e.g. FIRST) start to show no dichotomy.
Several of these surveys only measure the core.

- The fundamental plane’ (L , L , M) relations of Merloni et al. (2003) and

Falcke et al. (2004) do not find any evidence for any dichotomy. They also
only use core luminosities.

« Sikora et al. (2007) revive the discussion using recently estimated black hole
masses to plot radio loudness as a function of Eddington ratio... using
extended radio emission.



Sikora, Stawarz & Lasota (2007):
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The interpretation presented is that spin affects the radio loudness - higher spin = more
powerful jets, but at high Eddington ratios there are also state changes (like XRBs)



Learning about varying core radio loudness from black hole binaries
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Jets in hard state black holes: many ways of changing radio loudness
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Jets in hard state black holes: many ways of changing radio loudness
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Almost exactly the same hard state correlation seen in other source(s)



Jets in hard state black holes: many ways of changing radio loudness

%]

E a5
3
k= .%'QQ
= S =
-—_ | = 29
2 B g
Z = 5 2 32 ; o GX 339-4 hard
S £ g E 31}
W o= T 29¢ ¢ i g
S S F gl N £ a g . V404 Cyg
g 2 27t :
A A XTE J1650-500
S 30 32 34 36 38

Log(10) X-ray luminosity

Most of the time (hard state) radio and X-rays nicely correlated
In soft state however jet is suppressed dramatically at ~same luminosity
Almost exactly the same hard state correlation seen in other source(s)
Some sources show parallel behaviour but are more ‘radio quiet’



Jets in hard state black holes: many ways of changing radio loudness
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Most of the time (hard state) radio and X-rays nicely correlated
In soft state however jet is suppressed dramatically at ~same luminosity
Almost exactly the same hard state correlation seen in other source(s)
Some sources show parallel behaviour but are more ‘radio quiet’
Same source, same state, same luminosity, different jet power ...



Log1o(GHz radio luminosity)

The X-ray : radio correlation - we thought it was like this

(e.g. Gallo, Fender & Pooley 2003)

33 —
@ GRS 1915+105
B GX 339-4
30| |® 4U1543-47
A XTE J1550-564
¥ XTE J1650-500
) GRO J1655-40 o
31 |01 SwiftJ1753.5-0127
& GRO J0422+32
A 1E1740.7-2942
VA 0620-00
30} |® GRS1758-258
B GS1354—64
& XTE]J1118+480
59| |A XIEJ1720-318
V¥ V404 Cygni v
() HI1743-322 Y
28 v
27 v
26 ' ' ' '
30 32 34 36 38

Log10(1-10 keV X-ray luminosity)




Log1o(GHz radio luminosity)
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But in fact it is like this (minus Cygnus X-1): Two tracks ?

(Calvelo et al. 2010)
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Log1o(GHz radio luminosity)

Unlike in AGN there are a set of reported spin measurements for these source
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BH XRB spin from disc fitting BH XRE spin from reflection (including Fe line)

D:E 0.4 D:E 0.8 1 0.2 0.4 0.6 0.8 1
AGN spin (all from reflection) All spin measurements (BH + AGN)

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1



Log(10) radio luminosity

Log(10) radio luminosity
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We can take take these estimates
of the radio power and compare
them directly with reported spin
measurements from X-rays...
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Hard state radio normalisation

Hard state radio normalisation
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There is no correlation of any of the jet
parameters (radio power, speed) with

* Reported spin measurements

* Any other known binary parameter (binary
separation, inclination, disc size)

Fender, Gallo & Russell (2010)
Soleri & Fender (submitted)
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So one or more of these statements is
true for black hole binaries

* The jet power estimates are wrong

* The spin measurements are wrong

 Spin is not important for jet power
(i.e. Blanford-Znajek not important)
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The lowest reported spin has a strong jet (Gallo et al., Russell et al.)

28908

RA (J2020)

For Cyg X-1 (a=0.05+/-0.01) we have strong lower limits on jet power which are already
comparable to the X-ray luminosity and to the (mass normalized) jet power of (LL)AGN
(see also Heinz 2006; Malzac et al. 2009 .. lots of work on this jet)

McKinney (priv. comm.) - if the spin measurement of Cyg X-1 is correct, and you observe
a highly relativistic jet from it, then our current models and theories are wrong



So what's going on with the Sikora et al. result ? We attempt to make two corrections

1. Massterm:L__/L~M*°L">

radio
Predicted by Heinz & Sunyaev(2003) - larger mass = lower optical depth in the jet
Observationally established by Merloni et al. (2003), Falcke et al. (2004)
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Log Radio Loudness

Log Eddington ratic

The gap
between the
two tracks is
closed
considerably,
but not
totally

Log Radio Loudness
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Sikora et al. data with the mass correction
(dividing by M%?)
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- 2. A further correction - the use of only core
| radio luminosities - collapses the ‘dichotomy’

i %&% * almost completely (in fact there remains a
Lot TEEAY statistically significant difference at the level of a
LT ] few in jet power - not orders of magnitude)
Y- Broderick & Fender (in prep)
_sLng Eddin_g:t.nn ratin_3 N - ° _1 : : : : : : :
O
2+ . .
|
The tracks nearly merge oo .
. . . . D H | | * ++ e
and are ~indistinguishable Sr o . gam o opg L x% b
when only core radio o oo, g 5 « 4+ 6
luminosities are used R * ¥ x LAV - 2
< . +4+ ® Faw
9 * b ox A K x
o 5 E' +¢ + %
e ¥ *+ Ty
E * t g }%{KK
o -6 RN
*
9 L *
*
- L +
! BLRG  +
RLO x y
-8 | Seyferts/LINER S ¥
FRI o
5 FG Quasars
-8 -7 -6 5 -4 -3 -2 -1

Log Eddington ratio



Number

Total radio luminosities

Number

1.2 14 16 1.6

0.2 04 ng 0s 1
Maormalized R

Core radio luminosities + mass correction

12 14 1.6 18

ne 0.4 06 0.8 1
Normalized R

Distribution perpendicular to
correlation

Sikora et al.

Broderick & Fender
(mass correction, core only)



Should we use core or extended emission ?
Extended emission (=bimodality)

* Pros: unbeamed

* Cons: must be affected by environment (jets in a dense environment are
brighter than jets in a vacuum). Time-averaged, but compared with
instantaneous core optical, X-ray etc measurements.

Core emission (=no bimodality)

* Pros: Instantaneous measurement - good for comparing to X-ray, optical,
etc. Not affected by large-scale environment. The only relevant measurement
for comparison to X-ray binaries.

» Cons: could be beamed (but seems unlikely that beaming alone could
remove and collapse a real intrinsic bimodality). Doesn't really (yet) explain
why only ellipticals on upper track.



Summary

X-ray binaries have shown us that ‘radio loudness’' can change dramatically in
the same source on short timescales — on its own it is not a measure of spin

There is no correlation between reported spins and jet in binaries. This means
that one of the following is correct:

(I) radio measurement are wrong / it is not a good measure of jet power
and/or (i) spin measurements are wrong
and/or (ii) spin doesn not power jets from black holes

Revisiting the radio-loud:radio-quiet ‘'dichotomy’ in AGN, we find that it is not
there (to any great extent) when mass corrections are applied and only core
radio emissions is used. This is not a surprise in the context of the history of

radio loudness’ in AGN.

— If spin is responsible for the Sikora et al. Dichotomy then it only affects
extended and not core emission. Odd. Surely environment and age are equally
plausible ? Might screw up useful comparisons with XRBs (but they work..)

Conclusion: There is at present essentially no strong evidence for spin-
powering of jets from black holes of any mass, AGN or X-ray binary.
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Log Radio Loudness

Perhaps spin really has nothing to do with the tracks..
BH binary H1743-322 appears to ‘change tracks' during decline
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