



Institute for Computational Cosmology

**"Stellar disc-active** galactic nucleus alignments in the **SDSS-DR7**"

Claudia Lagos (ICC, Durham), Nelson Padilla (PUC, Chile), Michael Strauss (Princeton), Sofía Cora (UNLP, Argentina) & Lei Hao (Shangai Observatory)

"AGN workshop", Birmingham, September, 2010

### AGN: Implications on galaxy formation and evolution



### Lagos, Cora & Padilla (2008, MNRAS 388, 587)

Cattaneo et al (2008), Somerville et al. (2008), Croton et al. (2006), Bower et al. (2006)

Lagos, Padilla & Cora (2009a) MNRAS, 395, 625,



Two scenarios: coherent/random (galactic/accretion disc orientation)



Ell/Spi dichotomy: insensitive to model choices

Massive BHs  $\rightarrow$  large spins (a>0.9, coherent), (a<0.7, random, King et al. 05, 0.8, Fanidakis et al. 2010)

**CONTRADICTORY RESULTS:** position angles, naive inclination angle determinations

NO ALIGNMENTS: Kinney et al. (2000); Schmitt et al. (2002); Greenhill et al. (2009)

ALIGNMENTS SIGNAL: Dumas et al. (2007); Battye & Browne (2009)

#### A novel approach to study inclination angles of AGN in the SDSS DR7

Large number statistics Comprehensive way to determine orientations (Lagos, Padilla, Strauss, Cora & Hao, 2010, soon)

→ Tested AGN unified model/accretion models (Lagos et al. 2009)

→ We determined a high-significance degree of alignment between the host galaxy and AGN (torus/jets)

### AGN catalogue from the SDSS DR7 spectroscopic sample

AGN catalogue by Hao et al. (2005a). SDSS DR4.

 $\rightarrow$  Line diagnostic by Kauffmann et al. (2003) and Kewley et al. (2001)



We use 27,450 Seyfert type I and II  $\rightarrow$  we do not consider SF or composite galaxies control samples  $\rightarrow$  normal galaxies that mimic AGN hosts ASSUMPTION: AGN galaxies have the same shapes than normal galaxies



### **Projected shapes: AGN vs control samples**



# Characterization of the 3-D shapes of control samples (Padilla & Strauss 2008)



→  $\log_{10}(1 - B/A) \rightarrow Gaussian \mu \sigma$ →1-C/B → Gaussian  $\gamma \bullet \sigma\gamma$ → Median extinction (spirals) → E<sub>0</sub> →(g-r)/M<sub>r</sub> distribution functions



| F                   | -0            | F                | _             | ,               | - 1             | - max |
|---------------------|---------------|------------------|---------------|-----------------|-----------------|-------|
| Type I ellipticals  | 0.0           | $-0.9 \pm 0.5$   | $2.3 \pm 0.6$ | $0.45 \pm 0.03$ | $0.21 \pm 0.04$ | 0.86  |
| Type II ellipticals | 0.0           | $-1.35 \pm 0.4$  | $1.7 \pm 0.5$ | $0.45 \pm 0.03$ | $0.23 \pm 0.04$ | 0.88  |
| Type I spirals      | $0.3 \pm 0.3$ | $-0.85 \pm 0.35$ | $1.7 \pm 0.2$ | $0.75 \pm 0.02$ | $0.07 \pm 0.03$ | 0.25  |
| Type II spirals     | $0.3 \pm 0.3$ | $-0.25 \pm 0.3$  | $2.2 \pm 0.2$ | $0.75 \pm 0.02$ | $0.04 \pm 0.02$ | 0.33  |
|                     |               |                  |               |                 |                 |       |

# Viewing angle distributions: from 3D information (control samples → random orientations)



Either or both: → Alignment between the galaxy disk and the torus? → Galactic disk is producing the absorption

### **Orientation alignments:** Is the galactic disk responsible for the absorption?



Elliptical galaxies: low gas con  $SF \rightarrow alignments galaxy/torus$ 



 $\rightarrow$  High [OIII]: alignments galactic disk/torus

### Orientation alignments: The galactic disk is not enough to explain b/a



Composite b/a distribution is more edge-on (type II) or face-on (type I) → an 'extra' absorbing object is, at least, needed (torus)

## Orientation alignments: the galaxy disc vs the torus



## What have we learned from this approach?

(Padilla & Strauss 2008; Lagos, Padilla & Cora 2009; Lagos, Padilla, Strauss, Cora & Hao 2010 soon)

- $\rightarrow$  Type II AGN hosts  $\rightarrow$  elongated objects  $\rightarrow$  edge-on tendency
- $\rightarrow$  Type I AGN hosts  $\rightarrow$  round objects  $\rightarrow$  face-on tendency
- → Random orientations ruled-out by  $\delta \chi^2 > 10$  for the type I spirals, type II ellipticals and subsample of high [OIII] EW type II spirals.
- → From information high/low [OIII] EW in spirals type II → at least 20% of edge-on type II are misclassified (composite objects, Goulding et al. 2009, 2010; Juneau et al. 2010).

- → Obscuration from the galactic disk cannot explain observed b/a distributions (also supported by ellipticals) → non-negligible degree of alignment between galaxy
- and obscuring torus (and inner AGN structure  $\rightarrow$  FIRST counterparts).

Lagos, Padilla & Cora (2009a) MNRAS, 395, 625 Fanidakis et al. (2009, arXiv:0911:1128)



Croom et al. (2004)

# **THANKS!**

**AEGIS mosaic** 



Lagos, Cora & Padilla (2008, MNRAS 388, 587) Cattaneo et al (2008) Somervil et al. (2008) Croton et al. (2006) Bower et al. (2006)

Marconi et al. (2004) Sikora et al. (2007)

-22

-24

M<sub>b</sub>

mag<sup>-1</sup>)

(Mpc<sup>-3</sup>

 $H_0 = 70 \text{ km s}^{-1} \text{Mpc}^{-1}$  $\Omega_m = 0.3 \Omega_A = 0.7$ 

-28

-26

### Implications of such kind of alignments: the theoretical point of view



# **Selection of control samples**





### **Calculation of the AGN viewing angle distribution**





# The unified AGN model (Antonucci 1993)



(ii) AGN ≈ galaxy → biases toward face/edge-on orientations in Sy hosts

### **Characterization of three-dimensional shapes**



### **Degeneracy of structural parameters**



Spirals/Elliptical type I/II have consistent shapes  $\rightarrow$  morphology is the main parameter instead of Seyfert type

## **Orientation alignments:** the galaxy vs radio jets

 $\rightarrow$  Match between our optical Seyfert galaxies with the FIRST radio survey



## **Orientation alignments:** the galaxy vs radio jets



~ orientation of optical sources Face-on tendency is conserved!  $\delta\chi^2$ ~100 → radio jets in the line-of-sight → alignment galaxy/jets

# Obscuration from the galactic disk (Goulding & Alexander 2009)





140

130

120

110

90

80

70

60

20

Δα



Battye & Browne (2009): 14,300 optical/radio galaxies → optical light vs radio jets

Dumas et al. (2007)

Ăα

 $\Delta \alpha$