A Combined X-ray/Low-Frequency Radio View of AGN Feedback in Galaxy Groups

Ewan O'Sullivan (Birmingham/CfA)

With thanks to:

Simona Giacintucci (CfA), Larry David & Jan Vrtilek (CfA), Somak Raychaudhury (B'ham), Myriam Gitti (CfA/Bologna)

The GMRT Groups project

- Galaxy groups contain >50% of galaxies in the Universe
- most common environment of AGN feedback.
- No useful statistical sample of nearby groups available!
- Our sample 18 groups with Chandra/XMM X-ray data and GMRT low-frequency radio observations, covering a wide range of group and radio galaxy properties.
- X-ray provides 1) Location/properties of most baryons
 - Estimation of energy in cavities, shocks, conduction & cooling rates.
 - 3) Dynamical limits of age of structures.
- Radio provides 1) Timescales via Synchrotron aging.
 - 2) Constraints on source geometry.
 - 3) Direct view of AGN/gas interactions.

Why GMRT? - <u>low-frequency</u>

- Older structures easier to see at lower frequencies.
- Broader spectrum gives better estimate of total power.
- Break frequency allows age to be estimated.

GMRT sensitivity (for 2-3hr obs.): rms $\approx 50\text{-}100~\mu\text{Jy/b}~$ @ 610 MHz rms $\approx 300\text{-}500~\mu\text{Jy/b}$ @ 235 MHz Resolution:

5" @ 610 MHz (HPBW) 12" @ 235 MHz

NGC 507 (Murgia et al. in prep.)

Benefits of low-frequency radio data

Smoothed Chandra 0.3-2 keV residual images 2350MHz \(\text{CAVROIN touts} \) urs HCG62 cavities are paired, NGC5044 cavities isotropically distributed by gas motions.

GMRT Groups sample

GROUP	Z	Chandra	XMM	150 MHz	235 MHz	327 MHz	610MHz	Papers?
UGC 408	0.0147	✓		✓	✓		✓	CfA in prep
NGC 315	0.0165	✓	✓		✓		✓	
NGC 383	0.0170	✓	✓		✓		✓	
NGC 507	0.0165	✓	✓		✓		✓	
NGC 741	0.0185	✓	√		✓		✓	Jetha 08 +
HCG 15	0.0208		✓		✓	✓	✓	
NGC 1407	0.0059	✓	✓		✓	✓	1	
NGC 1587	0.0123	✓			✓		1	
MKW 2	0.0368		✓		√		1	
NGC 3411	0.0153	✓	✓		✓		√	O'S 07
NGC 4636	0.0031	✓	✓		✓		✓	O'S 05 + Baldi 09
HCG 62	0.0137	✓	✓		✓	✓	✓	Gitti 10
NGC 5044	0.0090	✓	✓	✓	✓	✓	✓	David 09 +
NGC 5813	0.0066	✓	✓	√	√			Randall 10
NGC 5846	0.0057	✓	✓				✓	
AWM4	0.0318	✓	√		√	✓	✓	SG 08+2xO'S 10
NGC 6269	0.0348	✓			√		✓	Baldi 09
NGC 7626	0.0114	✓	✓	√	√		1	Randall 09

Small clear cavities Giant or poorly confined Amorphous/Core-halo

Core-halo and poorly-confined sources

No clear jets/lobes/cavities/shocks

Hot core → 2x10⁵⁷ erg heating

(O'Sullivan et al. 2007)

Large double source in merging group T map suggests cavity (Randall et al '08) Difficult to assess mass, temperature

Classifying the radio sources

- Red = small, well-confined, identifiable cavities.
- Blue = Giant sources extending beyond group, or very over-pressured
- Green = Amorphous/Core-halo sources, may still affect environment

Cavity power vs radio power – 10MHz-10GHz

Work in progress!

Uses 610-235MHz spectral index, not model fit. Integrated L_{radio} for source, not lobe luminosity.

BCES best fit:

$$Log P_{cav} = (0.55 \pm 0.08) Log L_{radio} + (2.15 \pm 0.15)$$

Similar to Birzan 0.59±0.08

Cavity power vs radio power - Caveats

Uncertainties on true power output very large

- Shocks add factor of:
 - ~3 in HCG 62
 - ~10 in NGC 5813
- Outer cavity adds factor
 - ~10 in NGC 5044
- Age > buoyancy time

subtracts factor of:

- ~6 in AWM4
- ~2 in NGC507

Summary

- We are studying AGN feedback in a sample of 18 groups.
- Our combined X-ray / low-frequency radio dataset is a particularly powerful tool for this study.
 - Low-frequency data significantly improves our ability to detect old/faint radio structures (vs VLA 1.4 GHz).
 - Multi-frequency coverage allows radiative age estimates as well as dynamical estimates from X-ray.
- Cavity power vs radio power estimates coming soon!
 - Only a subset of systems form cavities.
 - Energy in cavities may be < energy in shocks.
 - Buoyancy timescale not always representative of true age.
- We have a lot more planned for this dataset!

