

AGN Feeding and Feedback Numerical Models

Chris Power, University of Leicester in collaboration with Alexander Hobbs, Andrew King & Sergei Nayakshin

What I'm about to say...

- Model AGN feedback as a momentum-conserving outflow, locally...
 - Can explain observed M_{BH} - σ correlation.
- Modelling AGN feeding is much more challenging problem...
 - Bondi accretion is rarely a good description.
 - Angular momentum of accretion flow is important.
- Competition between black hole growth, star formation & feedback...
 - Stellar feedback as important as AGN feedback

AGN Feedback is Important

 Accretion most efficient way to liberate rest mass energy.

$$E_{acc}/E_{Bind} \sim 100$$

- Expect AGN feedback to be important... but how?
- Regulates formation of massive galaxies (e.g. Bower et al. 2006, Croton et al. 2006).
- Natural explanation for observed M-orelation (e.g. Fabian 1999, King 2003/05, Murray et al. 2005).

 $\sigma \, (\text{km s}^{-1})$

300

The AGN Feedback Cartoon

Modelling AGN Feeding & Feedback

From Di Matteo et al. 2005

- **Problem**: cannot resolve relevant scales.
- Sub-grid models unavoidable.
 - Bondi accretion
 - Thermal feedback
- Reproduce observed scaling relations by construction.

BUT...

- **Problem:** unphysical models.
- Do current models tell us anything meaningful?

A Model for AGN Feedback

- Simple model: AGN outflow sweeps up ambient gas in galaxy, drives it outwards, possibly expelling it from potential.
- Silk & Rees (1998) : energy-conserving outflow scales as σ^5 unphysical gas cools and radiates energy away!
- Fabian (1999), King (2003, 2005): momentum-conserving outflow.
- King (2003): Eddington-limited outflow, momentum flux is

which implies

$$\dot{P}_{\rm SMBH} \approx \frac{L_{\rm Edd}}{c} = \frac{4\pi G M_{\rm BH}}{\kappa}$$

$$M_{\sigma} = \frac{f_g \kappa}{\pi G^2} \sigma^4$$

See Andrew King's talk tomorrow...

A Numerical Model for AGN Feedback

- Need to go beyond analytical arguments...
- Use Radiation Hydrodynamics in GADGET (Nayakshin, Cha & Hobbs 2009)
- ✓ Analytical models develop physical framework...
- ✓ Test ideas using controlled simulations...
- ✓ Apply to astrophysically realistic situations.

From Power & Nayakshin, in prep

Testing AGN Feedback

Testing AGN Feedback

From Nayakshin & Power 2010

SMBH Growth & Star Formation

Nuclear star cluster growth preferred at expense of BH growth in low-mass galaxies – SF timescale shorter than Salpeter time.

Implications for low-mass end of the $M-\sigma$ relation.

Nayakshin, Wilkinson & King 2009

Testing AGN Feedback

Rotating Inflow: No longer recover M-σ, but can feed the AGN.

Linking AGN Feedback to Feeding

- How do we relate SMBH accretion rate to properties of accretion flow at 100 pc? 1 kpc? 10 kpc? (e.g Thompson et al. 2005, Hopkins & Quataert 2009, Levine et al. 2010)
- Distill complex physics into a simple estimator...
- Standard approach based on Bondi accretion (e.g. Springel et al. 2005, Booth & Schaye 2009)

 $\dot{M}_{\mathrm{BH}} = \frac{4\pi \,\alpha \,G^2 M_{\mathrm{BH}}^2 \,\rho}{(c_s^2 + v^2)^{3/2}}$

but this is very unsatisfactory...

Bondi rate depends only on density & temperature; accretion is instantaneous.

- **Problem 1:** How do we define the Bondi radius? (Hobbs, Power, Nayakshin & King, Submitted)
- **Problem 2 :** Angular momentum is important...

Accretion Disc Particle Approach

- Extension of sink particle method (Bate et al. 1995) capture gas if angular momentum is sufficiently small.
- Adds to mass of accretion disc, BH fed on viscous timescale.
- Feedback proportional to accretion rate Eddington limited.

Accretion Disc Particle

Early Times: Bondi

Late Times: Bondi

Late Times & Large Scales: Bondi

Modelling Galaxies I

From Power, Hobbs & Read, In Prep

Look at SMBH fuelling in isolated galaxies.

Modelling Galaxies II

Merger between MW & M31

Low accretion rate over ~7 Gyrs, but star formation and stellar feedback important.

M_{BH} - M_{Bulge} determined by stellar rather than SMBH feedback (Power, Zubovas, Nayakshin & King 2010).

Power, Hobbs, Read, Nixon & Cole

What I've said...

- Model AGN feedback as a momentum-conserving outflow, locally...
 - Can explain observed M_{BH} - σ correlation.
 - Cannot explain M_{BH} - M_{Bulge} correlation (by itself).
- AGN feeding is much more challenging problem...
 - Bondi accretion is rarely a good description.
 - Angular momentum of accretion flow is important.
- Competition between black hole growth, star formation & feedback...
 - Stellar feedback as important as AGN feedback.
 - Underweight SMBHs in low-mass galaxies.
 - Can explain M_{BH}-M_{Bulge} correlation.