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Balance radiation pressure – gravitational force

Eddington luminosity:

Eddington ratio:                                                   Eddington limit:

is defined for Thomson scattering, but what about dust?
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Eddington luminosity

Boost factor                                                 (~1 - 500) 

Effective Eddington ratio

Limit at which radiation pressure can expel the dusty gas:
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Fabian  et al  06, 08, 09

Calculations using 

CLOUDY 



Fabian  et al 06, 08, 09



AGN from the deep X-ray surveys:
2 Ms  Chandra Deep Field North and South (0.5 - 10) keV

965 objects in total – how to get the AGN?                           
erg/s

Properties needed: MBH ; Lbol ; NH ; z

Spectral fitting (Lbol ; NH )
Infrared follow-up: K-band magnitudes
Black Hole – Galaxy scaling relations (MBH - MK)

4110XL



234 AGN in both fields
with :
- measured K band mag 
- z < 1





Wide distribution:
agreement with Babić et al 07

Large fraction of obscured sources



- (MBH - MK) redshift 

evolution

(Merloni et al 2010 

relation)

- At z = 1, masses are 

lower by a factor of 1.6



Raimundo et al 10

Fabian et al 08, 09

- Search for outflows: 

good spectroscopic 

candidates

- Evolution with 

redshift?



 AGN in our sample have typically low Eddington ratios and high 
hydrogen column densities

 They avoid the area where we would expect outflows
- Spend most of their time obscured

 Prediction of primary candidates for spectroscopic studies

 Radiation pressure is important to understand central 
engine/obscuration interaction and population properties


