

Mass measurement from the projected phase-space analysis

Radek Wojtak

Halo Mass Project, Nottingham 2013

Outline

- Recognizing the problems
- Probabilistic approach to selection of members
- Dynamical equilibrium: anisotropic model of the distribution function
- Analysis of the projected phase space
- Expected scatter and bias
- Problem of asphericity (digression)
- Method: description of the algorithm
- Discussion

removal of interlopers/selection of members

Two-component model of the projected phase-space density K Cosmology Centre

Equilibrium model: anisotropic distribution function

Dark Cosmology Centre

Projected phase-space density

Dark Cosmology Centre

Breaking mass-anisotropy degeneracy

Projected phase-space analysis

- no need of data binning
 L~Πp(R_i,v_{los i}|parameters)
- breaking mass-anisotropy degeneracy
- degrees of freedom total mass profile, e.g. NFW tracer density profile, e.g. M/L~const anisotropy profile
- spherical symmetry

Virial mass (spherical overdensity)

- scatter of 30%
- typically underestimated

ASPHERICITY !

Cylindrical symmetry rather than spherical

Velocity dispersion-mass relation in different projections

Scheme of the analysis

First glance at the performance

Velocity diagrams stacked by mass

Velocity dispersion profiles stacked by mass

Dark Cosmology Centre

Summary

Dark Cosmology Centre

- Method based on probabilistic selection of members anisotropic and spherical model of the distribution function analysis of galaxy distribution in PPS
- Problems
 3% of catastrophic cases caused by strong structures along LOS
- Possible improvements tighter velocity envelope used to select members tighter initial cuts in positions and velocities
- Further perspective more parameters: concentration, anisotropy (if it makes sense ?) aspherical models

attempt to measure mass as $M(\sigma, elongation)$