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 Recognizing the problems 

The importance of interloper removal 845
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Figure 1. First row: velocity diagrams for the initial sample of galaxies (left) and after removal of interlopers with the method of vmax (middle) and the

method using MP/MVT (right). Rejected galaxies are marked with open circles, those included in the sample with filled circles. Second row: results of fitting

σ los assuming β = 0 in the form of 68.3, 95.4 and 99.73 per cent probability contours in the Mv–c parameter plane. The best-fitting values of the parameters

are indicated with a dot. Last two rows: velocity dispersion and kurtosis parameter profiles for the corresponding samples of galaxies. Dashed lines show the

best-fitting σ los profiles obtained by fitting σ los data alone assuming β = 0, solid lines show profiles from the joint fitting of σ los and κ los for arbitrary orbits.

average 73 per cent of unbound particles from simulated veloc-

ity diagrams obtained with the same initial cut-off in line-of-sight

velocity, as applied here to A576: ±4000 km s−1 with respect to

the cluster mean. The unbound particles remaining in the sample

afterwards were those falling within the cluster main body in the

projected phase space. Those remaining interlopers do not bias the

velocity dispersion significantly.

The method relies on calculating the maximum velocity available

to cluster members. The velocity is estimated assuming that a galaxy

is either on a circular orbit with velocity vcir =
√

G M(r )/r or

infalling into the cluster with velocity vinf =
√

2vcir so that

vmax = maxR{vinf cos θ, vcir sin θ}, (2)

where θ is the angle between position vector of the galaxy with

respect to the cluster centre and the line of sight.

In order to calculate the maximum velocity, we need an estimate

of the mass profile. It turns out (see Wojtak et al. 2006) that the

method works best if this is done with the mass estimator MVT

derived from the virial theorem (Heisler, Tremaine & Bahcall 1985)

MVT(r = Rmax) =
3πN

2G

%i (vi − v̄)2

%i< j 1/Ri, j

, (3)

where N is a number of galaxies with R < Rmax, vi is the velocity

of the ith galaxy and Ri,j is a projected distance between ith and jth

galaxies. The mass profile can be then obtained from M(r) ≈ MVT

(Ri < r < Ri+1), where Ri is the sequence of projected radii of

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 377, 843–854
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 Two-component model of the projected phase-space density 
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Equilibrium model: anisotropic distribution function 

The distribution function of dark matter 819

were calculated for the exact gravitational potential given by (17).
All particles occupy the area permitted by mechanics or lie very
close to the boundary line. Interestingly, quite a large fraction of
them have orbits extending beyond the virial sphere. As noted in the
previous section, we keep V2

s and Ls as units of energy and angular
momentum, respectively. The parameters of the NFW model were
obtained for each halo by fitting the NFW formula to the density
profile measured in logarithmic radial bins.

In the next step we determine for each halo the differential DF
given by (8). In this calculation we used our own version of the Fi-
EstAS (Field Estimator for Arbitrary Spaces) algorithm designed to
infer the density field from a scatter diagram embedded in a space of
any number of dimensions (see Ascasibar & Binney 2005 for more
details). As a result of this computation we get an estimate of N(E, L)
at all points of the energy–angular momentum plane corresponding
to the particles inside the virial sphere. Once N(E, L) is calculated
the DF can be easily obtained via (8). As discussed in Section 2, we
used approximation (12) for the orbits contained inside the virial
sphere and the exact formula (9) with (15) for trajectories extend-
ing beyond rv. We found that the additional advantage of expression
(12) is that it could be evaluated at any point of the energy–angular
momentum plane. This helps us to keep the estimates of the DF
obtained for points with angular momentum lying slightly above
Lmax(E).

In order to derive a contour map or a profile of the DF we introduce
a regular dense mesh on the energy–angular momentum plane and
find the median value of the DF in each cell. Such a set of median
points is considered as the final numerical approximation of the DF
and is used in preparation of all plots in this paper. Fig. 3 shows two
examples of the resulting contour maps obtained for two different
haloes. The unit of the DF in this and following figures is Ms/r3

s /V3
s .

The interval between the iso-DF lines is fixed at value 0.25 of the
logarithmic scale. The lack of the DF estimation in the lower part
of each diagram arises from the fact that this zone is occupied by
very few particles (see e.g. Fig. 2) so that no information on the
distribution can be retrieved. Let us note that this is an effect of the
finite mass resolution.

4 TH E A NA LY T I C A L M O D E L O F TH E
D I STRI BU T IO N FU NC T ION

A general form of the DF for spherical systems in the state of
equilibrium is a function of energy and the absolute value of angular
momentum f(E, L). In our approach we assume that the DF is
separable in energy and angular momentum:

f (E, L) = fE(E)fL(L). (18)

This is the first assumption that considerably narrows the family of
possible solutions. Therefore, it is necessary to check how robust it
is. We address this problem in the next section, where we present an
extensive comparison of the analytical model with the simulations.

The angular momentum part of the DF in equation (18) spec-
ifies the anisotropy of velocity dispersion tensor. This quantity is
commonly described with the so-called anisotropy parameter:

β(r) = 1 − σ 2
θ (r)

σ 2
r (r)

, (19)

where σ r and σ θ are the radial and the tangential velocity disper-
sions, respectively, and we assume there are no streaming motions.
The values of this parameter range from −∞ for circular orbits to
1 for purely radial trajectories. Fig. 4 shows the average anisotropy
profile of the simulated haloes used for the measurement of the DF.
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Figure 3. Contour maps of the DF of DM particles inside the virial sphere
of two example haloes. The profile of the maximum angular momentum is
indicated by Lmax(E) and the line of vanishing radial velocity at the virial
sphere by ra = rv (apocentre at the virial sphere) or rp = rv (pericentre at
the virial sphere).
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Figure 4. The profile of the anisotropy parameter. The solid line and the
dark grey area are the median and the interquartile range of the profiles
obtained for individual haloes and rescaled by rs inferred from fitting the
NFW profile.

The light grey rectangle in the background of the plot indicates the
position of the virial radius. It is clearly seen that the anisotropy
is typically a growing function of radius, with values ∼0.07 in the
halo centre and ∼0.3 at the virial sphere (see e.g. Mamon & Łokas
2005; Cuesta et al. 2007 for comparison). On the other hand, the
considerable width of the interquartile range of the measured β(r)
(dark grey region) signifies that the profiles of single haloes differ
among each other. Occasionally flat or decreasing profiles are mea-
sured. It seems that a simple and general enough analytical model of

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 815–828
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820 R. Wojtak et al.

the anisotropy should possess at least three free parameters which
determine asymptotic values of β(r) for small and large radii and a
scale of transition between them. We proceed with the construction
of such a model by introducing a proper ansatz for fL(L).

Louis (1993) showed that the following asymptotes of the angular
momentum part of the DF:

fL(L) ∝
{

1 for L " L0,

L−2β∞ for L % L0,
(20)

where L0 is an angular momentum constant, lead to constant
anisotropy β∞ at infinity [r2"(r) % L2

0] and β = 0 in the halo
centre. This result can be easily generalized to the case of a non-
isotropic velocity distribution in both limits of radius. First, let us
note that the central part of the halo is dominated by the particles
with small angular momenta, namely L2 ≤ 2r2"(r) " L2

0. Then,
remembering that the DF of constant anisotropy takes the form
(Hénon 1973; Binney & Tremaine 1987; Łokas 2002)

f (E, L) = fE(E)L−2β , (21)

it is easy to notice that the formula (20) can be rewritten in the
following way:

fL(L) ∝
{

L−2β0 for L " L0,

L−2β∞ for L % L0,
(22)

where β0 is the central anisotropy of a system. As shown by An &
Evans (2006b), the upper limit for β0 is equal to γ /2, where r−γ

is the density profile near the halo centre. This means that for the
NFW density model we have β0 ≤ 1/2.

The simplest function obeying the asymptotic conditions formu-
lated above is a double power-law function:

fL(L) =
(

1 + L2

2L2
0

)−β∞+β0

L−2β0 . (23)

As shown in the following section, this ansatz leads to a very realistic
anisotropy profile that fits well the β(r) profiles of simulated haloes.
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Figure 5. The top panels show (from left to right) the anisotropy, dispersion and kurtosis of the radial velocity inferred from the model of the DF with four
sets of parameters: β0 = 0.1, L0 = 0.25Ls and β∞ = 0.3, 0.5 (solid and dashed lines, respectively); β0 = β∞ = 0.3, L0 = 0.25Ls (dotted line); β0 = 0.4, L0 =
0.25Ls and β∞ = 0.1 (dashed–dotted line). The corresponding DFs for the same sets of parameters are plotted in the bottom panels in terms of the energy part
of the DF fE (E) (left), iso-DF lines with values indicated along the curve of maximum angular momentum (middle) and the profiles of the DF for three values
of angular momentum (right). In all calculations the NFW density profile was assumed.

Furthermore, the simplicity of formula (23) guarantees that the
energy part of the DF can be quite easily calculated via the inversion
of the integral equation

ρ(r) =
∫ ∫ ∫

fE(E)
(

1 + L2

2L2
0

)−β∞+β0

L−2β0 d3v. (24)

The key idea of this procedure lies in an analytical simplification of
the right-hand side of (24) to a 1D integral. The resulting equation is
then solved numerically for fE(E). The technical details of this
calculation are summarized in Appendix B. Once the full form of the
DF is determined one can also calculate the velocity moments. All
formulae are reduced to 1D integrals which can be easily evaluated
numerically (see Appendix C).

The top row of Fig. 5 shows the anisotropy, dispersion σ r and
kurtosis κ r = 〈v4

r 〉/σ 4
r of the radial velocity inferred from the model

of the DF. The calculations were carried out assuming the NFW
density profile and four sets of model parameters chosen to illustrate
the flexibility of the model: β0 = 0.1 and β∞ = 0.3, 0.5 (solid and
dashed lines, respectively); β0 = β∞ = 0.3 (dotted line); β0 = 0.4
and β∞ = 0.1 (dashed–dotted line). In all cases the transition value
of L0 = 0.25Ls was used.

The dispersion profiles for the two models with increasing β(r),
as expected, differ only for large radii which is the effect of differ-
ent values of β∞. Interestingly, the corresponding kurtosis profiles
clearly signify flat-topped velocity distribution in the outer part of
the halo (κ r < 3), highly peaked distribution in the centre (κ r > 3)
and roughly Gaussian for radii around rs (κ r ≈ 3). On the other hand,
non-increasing β(r) profiles lead to less peaked velocity distribu-
tions in the centre. It seems, therefore, that the typical anisotropy
of DM haloes, as shown in Fig. 4, is expected to coincide with the
kurtosis rapidly growing towards the halo centre (see also Fig. 10).
As we will see in the following section, this is one of the most
characteristic features of the phase-space structure of massive DM
haloes.

In the bottom panels of Fig. 5 we plotted the DFs corresponding to
four sets of model parameters, as described above. The three panels

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 815–828
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Projected phase-space density 

The mass and anisotropy profiles of clusters 813

provide constraints both on the mean anisotropy of a system and
the parameters of the mass profile (Łokas 2002; Łokas & Mamon
2003; Sanchis, Łokas & Mamon 2004; Łokas et al. 2006). These
results confirmed the idea that any attempt to infer the anisotropy
profile from kinematic data of spherical systems must be preceded
by the construction of a detailed dynamical model. In general, there
are two ways to achieve a desired complexity of a model. One is the
so-called Schwarzschild modelling (Schwarzschild 1979) in which
one considers a superposition of base orbits defined in the integral
space (e.g. Merritt & Saha 1993; Gerhard et al. 1998; Chanamé,
Kleyna & van der Marel 2008). Another one, which we adopt in
this work, is to provide a properly parametrized form for the phase-
space density.

There were several studies devoted to the analysis of kinematic
data in terms of the phase-space density. An important step in this
field was made by Kent & Gunn (1982) who used a family of simple
analytical models of the distribution function to analyse the data for
the Coma cluster. Van der Marel et al. (2000) obtained constraints
on the anisotropy of 16 galaxy clusters from the CNOC1 (Cana-
dian Network for Observational Cosmology) cluster redshift sur-
vey. A conceptually similar analysis was carried out by Mahdavi &
Geller (2004) for galaxy groups and clusters. In all cases, a constant
anisotropy was assumed which does not reproduce well the results
of cosmological simulations where the dependence of the anisotropy
on radius is usually seen (e.g. Mamon & Łokas 2005; Wojtak et al.
2005; Ascasibar & Gottlöber 2008). Since the anisotropy profile
has recently become a subject of growing interest, it appears rea-
sonable to generalize the above methods so that both the mass and
the anisotropy profiles may be inferred from the data. This implies
that one has to deal with an anisotropic model of the phase-space
density, which accounts for its radial variation. Quite recently, sev-
eral models satisfying this requirement have been proposed. The
anisotropy profile is specified by a proper parametrization of the
angular momentum part of the distribution function (Wojtak et al.
2008) or the augmented density (Van Hese, Baes & Dejonghe 2009).
The purpose of the present work was to adopt the approach of
Wojtak et al. (2008) to the Bayesian analysis of kinematic data and
to test on mock data sets how well the mass and anisotropy profiles
are reproduced.

The paper is organized as follows. In the first section, we intro-
duce a model of the phase-space density and discuss its projection
on to the plane of sky. In Section 2, we describe mock kinematic
data of galaxy clusters generated from a cosmological simulation.
Section 3 provides technical details on the Monte Carlo Markov
Chain (MCMC) analysis and Section 4 presents the results. The
discussion follows in Section 5.

2 THE PHASE-SPAC E D ENSITY

Any spherical system in equilibrium embedded in a fixed gravita-
tional potential is described completely by the distribution function
which depends on the phase-space coordinates through the binding
energy E and the absolute value of the angular momentum L. In
this work, we use the model of the distribution function recently
proposed by Wojtak et al. (2008), which was shown to recover
spherically averaged phase-space distribution of dark matter parti-
cles in simulated cluster-size haloes. The main idea of this approach
lies in the assumption that the distribution function is separable in
energy and angular momentum, i.e. f (E, L) = f E(E)f L(L). The
angular momentum part f L(L) is given by an analytical ansatz mo-
tivated by the purpose of providing an appropriate parametrization
of the anisotropy profile, which is traditionally quantified by the

so-called anisotropy parameter

β(r) = 1 − σ 2
θ (r)

σ 2
r (r)

, (1)

where σ θ and σ r are dispersions of the tangential and radial ve-
locity, respectively. This part of the distribution function takes the
following form:

fL(L) =
(

1 + L2

2L2
0

)−β∞+β0

L−2β0 , (2)

where β0 and β∞ are the asymptotic values of the anisotropy pa-
rameter at the halo centre and at infinity, respectively. The scale
of transition between these two asymptotes is determined by L0,
whereas a typical radial range of the growth or decrease of β(r) is
fixed at about two orders of magnitude centred on the radius corre-
sponding to L0 (see the anisotropy profiles in the top-right panel of
Fig. 1). Although some recent models of the distribution function
offer a little more flexible parametrization of the anisotropy profile
(e.g. Baes & Van Hese 2007; Van Hese et al. 2009), we find that our
choice is quite suitable for the purpose of this work, given that we
wish to reproduce the variability of β(r) with as few parameters as
possible.

The energy part of the distribution function f E(E) is given by
the solution of the integral equation

ρ(r) =
∫∫∫

fE(E)
(

1 + L2

2L2
0

)−β∞+β0

L−2β0 d3v. (3)

This equation can be simplified to the one-dimensional integral
equation and then solved numerically for f E (see appendix B in
Wojtak et al. 2008). As an approximation for the density profile
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Figure 1. The projected phase-space density f los(R, vlos) for five
anisotropy profiles characterized by different combinations of β0 and β∞
and plotted in the top-right panel. The top-left panel is a contour map of the
isotropic f los(β0 = β∞ = 0) and the four bottom panels show the differ-
ences between a given f los and the isotropic one. The solid lines labelled by
v(R) =

√
2%(R) are the profiles of the maximum escape velocity.
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Breaking mass-anisotropy degeneracy 
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Projected phase-space analysis 818 R. Wojtak et al.
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Figure 6. Same as Fig. 5, with the scale mass and radius converted to the
virial mass Mv and concentration c. The clusters are ordered by decreasing
virial mass.

The MAP values of the mass parameters typically underestimate
the true values by 15 and 11 per cent for the virial and scale mass,
respectively (see the position of median lines in the diagrams show-
ing residuals in Figs 5 and 6). Interestingly, a similar offset was
reported by Biviano et al. (2006) for the virial mass estimated from
the Jeans analysis of velocity dispersion profiles. They suggested
that this bias is related to the presence of interlopers infalling to-
wards the cluster along filaments. Due to relatively small velocities
in the rest frame of a cluster, these objects cannot be identified by
any algorithm of interloper removal and, therefore, remain in the
sample decreasing the velocity dispersion and the resulting virial
mass. We think that a similar mechanism is likely responsible for
the offset of our results. Nevertheless, we emphasize that this bias
is smaller than the statistical errors obtained in the MCMC analysis
so that the overall effect is not statistically significant.

It is a well-known fact the concentration parameter is weakly
correlated to the virial mass (e.g. Navarro et al. 1997; Bullock et al.
2001). This so-called mass–concentration relation is an imprint of
the formation history and is therefore thought to be one of the predic-
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Figure 7. Prospects of reconstructing the mass–concentration relation,
based on our MCMC analysis of 20 individual simulated clusters observed
in three directions labelled by x, y and z (from the top to the bottom panel).
The solid lines are the power-law fits to the best-fitting parameters obtained
from the analysis of the phase-space diagrams (filled circles). Open circles
indicate the true values of the parameters for our 20 clusters. The dashed line
repeated in each panel is a power-law fit to the mean mass–concentration
relation for WMAP3 cosmology from Macciò et al. (2008).

tions of the cosmological model. Fig. 7 demonstrates the prospects
of recovering this relation with our approach. Each panel in this
figure shows the results obtained for 20 phase-space diagrams for
a given direction of observation (filled circles with error bars) and
the best power-law fit (solid line). For comparison with the predic-
tion of the !CDM model, we plot the true parameters of our 20
clusters (open circles) and with a dashed line the power-law fit to
the mean mass–concentration relation for relaxed haloes simulated
in the framework of WMAP3 cosmology from Macciò, Dutton &
van den Bosch (2008). We find that, within errors, the empirical
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- no need of data binning 
  L~Πp(Ri,vlos i|parameters) 
-  breaking mass-anisotropy degeneracy 
-  degrees of freedom 
   total mass profile, e.g. NFW 
   tracer density profile, e.g. M/L~const 
   anisotropy profile     

-  spherical symmetry 

Virial mass (spherical overdensity) 
-  scatter of 30% 
-  typically underestimated 

              ASPHERICITY ! 
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Cylindrical symmetry rather than spherical 

SDSS clusters and rich groups of galaxies 
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Cluster-like DM haloes 
from Bolshoi simulation 
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Based on subhaloes in ~500 cluster-like haloes 
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scatter of 30%-40% 
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Scheme of the analysis 

Initial selection 
+/- 4000 km/s 
   <3Mpc 

virial mass 

radius cut R<rv 

virial mass 

  selection of members 
     |vlos|<[2Ψ(R)]1/2 

-  total mass profile: NFW 
-  galaxies: NFW 
-  β profile from simulations 
-  c(M) from simulations 
-  c(gal)/c(DM) from simulations 

more iterations (?) 

possible improvements 

tighter velocity envelope 
than |vlos|<[2Ψ(R)]1/2(?) 

& R<rv (?) 
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First glance at the performance 
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TAR , NI = 43
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AS1, NI = 2
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AS2 , NI = 2
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MVM, NI = 43
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RW, NI = 0
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PFN, NI = 30
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PFO, NI = 37
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PFR, NI = 30
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PFS, NI = 30
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PCN, NI = 0
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PCO, NI = 0
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PCR, NI = 1
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PCS, NI = 0
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CLN, NI = 3
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MPO, NI = 10
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HBM, NI = 0
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AvL, NI = 0
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ESC, NI = 1

~3% of catastrophic cases 
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Velocity diagrams stacked by mass 
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Velocity dispersion profiles  stacked by mass 
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Summary 

-  Method based on 
  probabilistic selection of members 
  anisotropic and spherical model of the distribution function 
  analysis of galaxy distribution in PPS 
-  Problems 
  3% of catastrophic cases caused by strong structures along LOS 
-  Possible improvements 
  tighter velocity envelope used to select members 
  tighter initial cuts in positions and velocities 
-  Further perspective 
  more parameters: concentration, anisotropy (if it makes sense ?) 
  aspherical models 
    attempt to measure mass as M(σ, elongation) 


