

Constraints on the gravitational wave background with pulsar timing arrays

Hannah Middleton, Siyuan Chen, Walter Del Pozzo, Alberto Sesana, Alberto Vecchio hannahm@star.sr.bham.ac.uk

Cosmic Mergers Workshop – 22 September 2017

Overview

- Pulsar timing searches for gravitational wave background
- No detection yet, but upper limits reaching astrophysically interesting sensitivities
- $\circ \text{ Recent doubt cast on binary assembly theories} \\ \rightarrow \text{ are mergers stalling } / \text{ accelerated} ??$
- · Bayesian analysis with astrophysical prior
- $\circ~$ Are prediction consistent with upper limits? $\rightarrow~$ yes so far!

Pulsar timing arrays

Pulsar timing array

- Gravitational wave background from many mergers
- At nHz frequencies
- Search for deviations in pulse time of arrivals

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Searching for the background

Recent results – data

Image: A. Sesana (reproduced from Hobbs & Dai 2017)

 Most stringent upper limit from Parkes Pulsar Timing array (Shannon et al 2015)

 $\circ~h_{ul} < 1 imes 10^{-15}$ at 95% confidence $(f=1/1{
m yr})$

- Are predictions in trouble?
 - Eccentricity?
 - Stalling?

Can we place any constraints on the population?

o Bayesian analysis with astrophysical prior

 Can we make any statements on our current predictions for the gravitational wave background

• Our model:

- merger rate density
- $\circ~$ chirp mass distribution ($\mathcal{M}=(m_1m_2)^{3/5}/(m_1+m_2)^{1/5})$
- redshift distribution
- eccentricity at decoupling from the environment

Model

Chen, Sesana & Del Pozzo 2017 (10.1093/mnras/stx1093)

Eccentricity

- Some eccentricity at decoupling
- Population of eccentric gravitational wave driven binaries
- Environmental influence affects lower than PTA band
- Depletes sources at low frequency
- This is the **same** for all binaries

Chen, Sesana & Del Pozzo 2017 (10.1093/mnras/stx1093)

Model

Model

redshift distribution

6 parameters model:

 \dot{n}_0 (merger rate density) α , \mathcal{M}_* (chirp mass distribution) β , z_* (redshift distribution) e_t (decoupling eccentricity)

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Astrophysical Prior

 10^{-2} ALL S16 $({}_{\rm E}-{}^{\rm J}{\rm D}^{-3})W^{01}{\rm B}$ 🔼 КН13 **G**09 Model median strain at $f = 1/1 {
m yr}$ $4 imes 10^{-16}$ Pessimistic \approx $7 imes10^{-16}$ Middling \approx Optimistic \approx 1.5 \times 10⁻¹⁵ 10^{-7} 106 107 108 1010 109 $\mathcal{M}(M_{\odot})$ $8 imes 10^{-16}$ $AII + \approx$ ALL **S16** 10^{-2} 🔼 КН13 G09 dN/dVdz(Mpc⁻³) 10⁻⁴ (Shankar+ 16, Gültekin+ 09, Kormendy Ho 13) 10^{-4} 10^{-5} 0.0 0.2 0.4 0.6 0.8 1.0 z Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623 11/24

Astrophysical Prior

$$p(\theta|dM) = \frac{p(\theta|M)p(d|M,\theta)}{p(d|M)}$$

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

pessimistic

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

optimistic

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

all+

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Summary

- Upper limits are eating into predicted values
- But models are still consistent with observation
- Little constraint on the model parameters eccentricity not essential
- No need to rethink predictions yet
- Order of magnitude improvement in sensitivity would put optimistic predictions in more trouble

Bonus slides! Quantitative Results

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

Middleton, Chen, et al. arXiv:1707.00623

pessimistic

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

middling

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

optimistic

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623

all+

Chen, Middleton, et al. doi.org/10.1093/mnras/stx475 Middleton, Chen, et al. arXiv:1707.00623