HUBBLE FRONTIER FIELDS : AN EXTRAORDINARY VIEW INTO GALAXY CLUSTERS

Cosmic Mergers Workshop 21th September 2017

Mathilde Jauzac

Dominique Eckert, Matthieu Schaller, Johannes Schwinn, Richard Massey, Carlton Baugh, Priyamvada Natarajan, Eric Jullo, Johan Richard, Marceau Limousin, Jean-Paul Kneib & the CATS team

FROM LENSING TO MULTI-WAVELENGTH : (Some of) What you can do with massive GALAXY CLUSTERS ...

Cosmic Mergers Workshop 21th September 2017

Mathilde Jauzac

Dominique Eckert, Matthieu Schaller, Johannes Schwinn, Richard Massey, Carlton Baugh, Priyamvada Natarajan, Eric Jullo, Johan Richard, Marceau Limousin, Jean-Paul Kneib & the CATS team

OUTLINES

1. SOME COSMOLOGICAL CONTEXT 2. STRONG GRAVITATIONAL LENSING

3. WEAK GRAVITATIONAL LENSING

4. MULTI-WAVELENGTH ANALYSIS

5. CONCLUSION & PERSPECTIVES

COSMOLOGICAL CONTEXT

COSMOLOGICAL CONTEXT

GRAVITATIONAL LENSING

- Basics of lensing:
 - Important mass density locally deforms the Space-Time,
 - A pure geometrical effect, no dependence with photon energy

GRAVITATIONAL LENSING

- Basics of lensing:
 - Important mass density locally deforms the Space-Time,
 - A pure geometrical effect, no dependence with photon energy

Gravitational Lensing (GL) is one of the most efficient tool to measure DM distribution in the Universe

GRAVITATIONAL LENSING

- Basics of lensing:
 - Important mass density locally deforms the Space-Time,
 - A pure geometrical effect, no dependence with photon energy

Gravitational Lensing (GL) is one of the most efficient tool to measure DM distribution in the Universe

- Lensing by a (massive) cluster
 - Strong Lensing (SL) = core of the cluster as arcs & multiple images
 - Weak Lensing (WL) = outskirts of the cluster as statistical deformation of background sources

OUTLINES

1. SOME COSMOLOGICAL CONTEXT
2. STRONG GRAVITATIONAL LENSING

3. WEAK GRAVITATIONAL LENSING

4. MULTI-WAVELENGTH ANALYSIS

5. CONCLUSION & PERSPECTIVES

Case of Abell 2744 : ~180 multiple images Jauzac et al. 2015b, 2006 Lam et al. 2014 Wang et al. 2015 Mahler et al. 2017

331.3

10.39.3

23.3

0

26.3

34.32.2

10"

32.3

27.2

44.2

24 -

22.3

0

43.1

MAIN LIMITATIONS : HST imaging & Lack of spectroscopic redshifts

24.3

22.1

49.2

26.2

47.47.2

0 0

53.1

27.1 0

28.1

East

45.2

0

4842.3

0 0

893

18.3

North

30.3

31.2

32.

44.1

18.1

19.2 0

46.2

0

41.2 0

2623. 0 0

3434.1

49.1

30.1

1ST STRONG LENSING REVOLUTION : HFF

WHAT ARE THE HUBBLE FRONTIER FIELDS ?

(http://www.stsci.edu/hst/campaigns/frontier-fields) Lotz et al. 2017

- Highly-constrained Gravitational Lensing mass models - Highly-precise Magnification estimates

THE DEEPEST DATA EVER OBTAINED FOR LENSING GALAXY CLUSTERS !!!

6 strong lenses & 6 blank fields
 140 HST orbits (> 3days of observations) – ACS & WFC3
 mag ~ 29 in the optical and near-IR

THE DISTANT UNIVERSE
 CLUSTER PHYSICS
 GALAXY EVOLUTION, ...

2ND STRONG LENSING REVOLUTION : VLT/MUSE

Abell 2744: 2x2 mosaic Mahler et al. 2017, sub. to MNRAS

> SMACS 2031 : 1 pointing Richard et al. 2015

MACS0416: 2 pointings Caminha et al. 2017

MACS1149 : 1 pointing Jauzac et al. 2016a; Grillo et al. 2016

AS1063 : 2 pointings Caminha et al. 2016; Karman et al. 2014, 2017

> MACS1206 : 1 pointing Caminha et al. 2017

Courtesy of J. Richard

Cosmic Mergers - Mathilde Jauzac

Abell 370: 1 pointing

Lagattuta et al. 2017

CLUSTER STRONG LENSING : HOW TO MODEL THE MASS ?

DIFFERENT ALGORITHMS : Parametric & non-Parametric

INPUTS :

- Cluster-scale halos/Uniform distribution
- Strongly-lensed multiple images
- Cluster galaxies

OUTPUTS:

- Cluster mass maps (convergence, shear, ...)
- Magnification maps

CLUSTER STRONG LENSING : HOW TO MODEL THE MASS ?

Mass estimates: $M(R < 250 kpc) = 2.765 \pm 0.008 (stat) 10^{14} M_{sun}$

> Magnification estimates : $\mu = 5.61 \pm 0.10 \text{ (stat)} \pm 0.57 \text{ (sys)}$

<u>SL-ONLY ANALYSIS</u>

Jauzac et al. 2015b

See also Zitrin et al. 2009, 2011, 2013; Richard et al. 201 2014; Jullo et al. 2010; Diego et al. 2014, 2015, 2016; Sharon et al. 2015; Limousin et al. 2012, 2016; Lam et al.

Best-fit parametric mass model - LENSTOOL :

- 154 SL constraints
- 2 DM clumps
- 733 cluster galaxies
- **RMS = 0.79**"

Magnification map (mags)

SYSTEMATICS LIMITED : Johnson et al. 2016, Acebron et al. 2017, Chirivi et al. 2017

CLUSTER STRONG LENSING : COSMOLOGICAL TEST

SL-ONLY ANALYSIS

Natarajan, Chadayammuri, Jauzac et al. 2017, MNRAS, 468, 1962

Mass and radial distribution of substructures

- Test of LCDM
- Good agreement at the low-mass end

CLUSTER STRONG LENSING : TRANSIENT SOURCES

SN REFSDAL : 1st multiplylensed SN

Kelly et al. 2015; Jauzac et al. 2016a; Treu et al. 2016; Grillo et al. 2016

SPOCK : spatially coincident but not temporally Rodney et al. 2017

ICARUS/IAPYX/PERDRIX : 1st lensed star @ z=1.49 Kelly et al. 2017; Diego et al. 2017

CLUSTER STRONG LENSING : THE HIGH-Z UNIVERSE

Cosmic Mergers - Mathilde Jauzac

OUTLINES

1. SOME COSMOLOGICAL CONTEXT 2. STRONG GRAVITATIONAL LENSING

3. WEAK GRAVITATIONAL LENSING

4. MULTI-WAVELENGTH ANALYSIS

5. CONCLUSION & PERSPECTIVES

CLUSTER WEAK LENSING : HOW TO MODEL THE MASS ?

DIFFERENT ALGORITHMS : Parametric & non-Parametric

INPUTS:

- Multi-scale / Uniform grid of potentials
- Weakly-lensed background galaxies
- Cluster galaxies

OUTPUTS:

- Cluster mass maps (convergence, shear, ...)
- Magnification maps
- Detection of large-scale structures, substructures

CLUSTER WEAK LENSING : LARGE-SCALE STRUCTURES

OUTLINES

1. SOME COSMOLOGICAL CONTEX 2. STRONG GRAVITATIONAL LENSING **3. WEAK GRAVITATIONAL LENSING** MERGER A. MULTI-WAVELENGTH ANALYSIS 5. CONCLUSION & PERSPECTIVES

CLUSTER HISTORY : A MULTI-WAVELENGTH APPROACH

<u>SL + WL : TOTAL MASS</u>

IST FRONTIER FIELDS

Detection of sub-

structures

Lenstool : Hybrid method High-resolution in the core + Flexibility in the outskirts

<u>SL + WL + XRAY + ZSPEC : 'FULL PICTURE'</u>

gas/light peaks alignement/offset between DM-baryons ? (No) Xray emission for substructures ? ICL - Montes et al. 2014

Jauzac et al. 2015a

COMPARISON WITH MXXL

Jauzac et al. 2016b; Schwinn, Jauzac et al. 2017a Schwinn et al. 2017b, *in prep.*

Total Mass : **~70 clusters** 0.28 < z < 0.32 ★ Cluster as massive as A2744 are common

Number of Substructures : 2 clusters with max of 4 substructures within 1 Mpc

★ A2744 substructure distribution is not observed in MXXL

NUMERICAL & OBSERVATIONAL CAVEATS

- Lack of resolution for subhalo finder algorithms
- LOS substructures from 2D mass measurements (see Gioccoli+16)

POSSIBLE CONFLICT WITH LCDM ?

COMPARISON WITH MXXL PARTICLE DATA

Schwinn, Jauzac et al. 2017, in prep.

A2744 CLUSTERS NOT THAT RARE ... MAIN CAVEAT : Mass definition & SH detection algorithms

NO POSSIBLE CONFLICT WITH LCDM !

COMPARISON WITH MXXL

Jauzac et al. 2017, sub. to MNRAS

Particle data @ z=0.24 : 2 clusters Identification of substructures : 8 & 7 substructures Ray-tracing up to z=0.58

SUBFIND masses : not comparable Infall distance : D_{0.58-0.24} ~ 2-3 Mpc

COMPARISON WITH C-EAGLE

Jauzac et al. 2017, sub. to MNRAS

Particle data @ z=0.48, z=0.24, z=0 : 1 cluster Identification of substructures : 8 substructures @ R>R₂₀₀ Tracing down to z=0.24

C-EAGLE Barnes et al. 2017, Bahé et al. 2017

SUBFIND masses : not comparable Infall distance : $D_{0.48-0.24} \sim 2 \text{ Mpc}$ Growth rate btw z=0.48 & z=0 = 160%

MACSJ0717 vs Abell2744

Jauzac et al. 2017, sub. to MNRAS

- Different components : core, galaxies and substructures
- Change of slope in the core :
- evolution of M-c relation with z Simple calculation of infall distance :
- ~ 2 Mpc btw z=0.54 and z=0.31 Agreement with MXXL & C-EAGLE

If applied to MACSJ0717 :

- @ z=0.31 : most of the substructures in $R < R_{200}$
- @ z=0 : extremely massive cluster of M>1x10¹⁶M_{SUN} !

TAKE-AWAY MESSAGES :

Jauzac et al. 2017, sub. to MNRAS

3. EVEN IF AT THE LIMIT OF LCDM : ANALOGUES STILL EXIST !

Cosmic Mergers - Mathilde Jauzac

1. MACSJ0717 : A SUPER-CLUSTER @ Z=0.54

2. MACSJ0717-LIKE CLUSTERS MOST LIKELY PROGENITORS OF ABELL 2744-LIKE CLUSTERS

OUTLINES

1. SOME COSMOLOGICAL CONTEX 2. STRONG GRAVITATIONAL LENSING **3. WEAK GRAVITATIONAL LENSING** 4. MULTI-WAVELENGTH ANALYSIS 5. CONCLUSION & PERSPECTIVES

MERGER

CONCLUSIONS/SUMMARY

- SL ONLY : useful for high-z Universe, transient studies, reconstruction of lensed sources, ...
- WL ONLY : useful for detection of 'low-mass/low-density' substructures, large-scale structures
- **MULTI-WAVELENGTH ANALYSIS :** THE ONLY WAY TO UNDERSTAND CLUSTER PHYSICS
 - ★ Constraints on DM nature
 - ★ Quantifying content of large-scale filaments
 - ★ Powerful constrain the SHMF from high-mass to low-mass end
 - ★ Confront theory & observations for the first time

MERGER AHEAD

WHAT'S HAPPENING AT THE MOMENT ?

CLUSTER LENSING & REIONIZATION WITH HUBBLE

WHAT'S NEXT ? BUFFALO !

BEYOND ULTRA-DEEP FRONTIER FIELDS AND LEGACY OBSERVATIONS HST TREASURY PROGRAM

PIS : STEINHART / JAUZAC

EXTENSION OF THE HFF

- High-redshift Universe
- Cluster evolution / Cosmological Tests
- Prepare high-z sources for JWST/NIRSpec

SPECIFICITIES

- 101 HST orbits
- 2 optical filters : F814W & F606W
- 3 NIR filters : F105W, F125W, F160W

THANKS A LOT FOR YOUR ATTENTION

CLUSTER HISTORY : CONSTRAINTS ON DM

ONLY POSSIBLE WITH MULTI-WAVELENGTH !!!

CLUSTER HISTORY : CONSTRAINTS ON DM

• $\sigma_{\rm DM}/{\rm m}$ < 1.25 cm².g⁻¹

72 CLUSTERS HST/ CHANDRA

Harvey et al. 2015

- Major & minor mergers
- $\sigma_{\rm DM}/{\rm m}$ < 0.47 cm².g⁻¹

SEE ALSO MERTEN ET AL. 2011, MASSEY ET AL. 2015, ...

ONLY POSSIBLE WITH MULTI-WAVELENGTH !!!

CLUSTER HISTORY : MISSING BARYONS

NW Filament

X-RAY+SL+WL ANALYSIS

Eckert, Jauzac et al. 2015, Nature

Deep XMM Observations WL : HST + CFHT HYBRID-LENSTOOL : SL potentials + Uniform gride

 3 large-scale filaments with SN ≥ 6 T ~ 15-20 10⁶ K
 DM counterparts for all 3

Gaz ~ 5-10% of filament content

E Filament

S Filament

X-ray gas

WL Mass