

Modeling the growth of massive galaxies via mergers: A Semi Empirical approach

Philip Grylls

Email: P.Grylls@soton.ac.uk

Twitter: @AstroGrylls

GitHub: PipGrylls

Supervisor: Francesco Shankar

Outline Of Talk

· Semi Empirical Approach

· Merger Driven Morphological Change

· Empirical Advantages

What is Semi Empirical Modelling

- Complementary to Semi-Analytic and Hydro
- Informed by observation reducing parameters
- . Flexible modelling

Our Model – 1:Halo Merger Trees

Bolshoi-Planck dark matter merger trees (Klypin et al. 2016)

Our Model -2:Abundance Matching

Our Model – 3:Assigning Galaxy Properties

Stellar Mass informs

- Star Formation Rate¹
- Disk Size²

.

Gas Fraction³

1. Tomzac 2016, 2.Shen 2003, 3.Upper Limit given by Stewart 2009

Mergers-Morphological drivers

- Starburst Rapid conversion of gas to stars
- Distribution of gas and stellar mass*

Minor mergers are driving a morphological change in the galaxy from a late type disk (low B/T) to an early type (high B/T)

*Methods inspired by Hopkins et al 08 and Cole et al 2000

Results -Morphology by Redshift

Results -Morphology by Mass

SDSS B/T> 0.75
SDSS 0.75>B/T> 0.2
SDSS 0.2>B/T
SEM 0.75>B/T> 0.2
SEM 0.2>B/T

Satellite Fractions

For satellites above 10¹⁰

What do we gain through the empirical approach

- Avoid growing galaxies from first principles, lowering assumptions
- Our (re)initialization routine can ensure that we are probing the role of mergers exclusively
- We can be flexible to new data or new models without the need for significant retuning

Conclusions

-We have developed a **flexible** lightweight model, facilitating **rapid development** and testing of new models.

-We test if **mergers alone** can create the observed morphology mix.

-Future work will test the impact of instability and disk regrowth.

Philip Grylls

P.Grylls@soton.ac.uk, @AstroGrylls

Models: Model 1: Cole 2000

Starburst:
$$e_{burst} = e_{1:1} \left(\frac{M_2}{M_1} - e_0 \right)^{\gamma}$$

	Major, M _{sat} /M _{cent} > 0.3		Minor, M _{sat} /M _{cent} <0.3
•	Starburst as above.	•	Starburst as above.
•	Galaxy morphologies destroyed remnant is an elliptical.	•	Gas added to the disk of the central.
•	Mass of Central and Satellite added to the elliptical remnant.	•	Satellite stellar mass adds to the bulge of the central galaxy.
•	Remnant is quenched and can only grow via mergers.	•	Galaxy is still considered to be on the star forming main sequence.

Models: Model 2: Hopkins 2009

Starburst:
$$e_{burst} = e_{1:1} \left(\frac{M_2}{M_1} - e_0 \right)^{\gamma}$$

- Satellite causes a starbust as above.
- In addition the disk of the central galaxy is disrupted by the in falling satellite
- The mass of the bulge of the remnant is: Bulge of the central + SM of satellite + Starburst + Disrupted disk mass
- The mass of the disk of the remnant is: Disk of the central Disrupted disk mass
- The gas reservoir of the remnant is: Satellite Gas + Central Gas Starburst Mass