Cooling and AGN Feedback in Galaxy Groups

Ewan O'Sullivan

K. Kolokythas, J.M. Vrtilek, L.P. David, G. Schellenberger, F. Combes, P. Salomé, V. Olivares, S. Giacintucci, M. Gitti, T.J. Ponman, S. Raychaudhury, A. Babul

CENTER FOR ASTROPHYSICS

HARVARD & SMITHSONIAN

Why study feedback in groups?

- Most galaxies are located in groups
- Groups cool more efficiently than clusters → There are no non-cool-core groups!
- Shallow potential wells compared to clusters → AGN heating may have a greater impact
- Groups have reduced gas fractions Evidence of AGN over-heating?
- Selection problems:
 - RASS biased toward X-ray bright, centrallyconcentrated groups (Eckert et al. 2011).
 - Optical selection becomes unreliable for small numbers of members (e.g., Pearson et al. 2015)

Athens, Greece

Why study feedback in groups?

- Most galaxies are located in groups
- Groups cool more efficiently than clusters
 There are no non-cool-core groups!
- Shallow potential wells compared to clusters
 AGN heating may have a greater impact
- Groups have reduced gas fractions
 Evidence of AGN over-heating?
- Selection problems:
 - RASS biased toward X-ray bright, centrallyconcentrated groups (Eckert et al. 2011).
 - Optical selection becomes unreliable for small numbers of members (e.g., Pearson et al. 2015)

Athens, Greece

CLoGS: a Complete Local-volume Group Sample Statistically complete optically selected sample of 53 nearby groups within 80 Mpc • ≥ 4 member galaxies, ≥ 1 early-type member with $L_B \geq 3 \times 10^{10} L_{\odot}$ • Declination $\geq -30^{\circ}$ (covered by VLA sky surveys, visible from GMRT)

X-ray: XMM and/or Chandra observations of all groups (O'Sullivan et al. 2017 + in prep.) typically 20-40 ks XMM observations Radio: GMRT 610 & 235 MHz for all groups (Kolokythas et al. 2018, 2019) ~4 hrs/target, rms ~0.1mJy/bm @610 MHz, ~0.6mJy/bm @ 235 MHz CO: IRAM 30m or APEX for all dominant galaxies (O'Sullivan et al. 2015, 2018) 1-2 hrs/target, detecting $M_{H2} = 10^7 - 6x10^9 M_{\odot}$ H α : MUSE IFU for 18 dominant galaxies (Olivares et al. 2022) +20 more approved 1 hr/target, 1.5" seeing

The X-ray Universe 2023

CLoGS: thermal balance

Smaller jet systems (≲50 kpc) in thermal balance

Larger jet systems over newared relative to cooling

- $P_{cav} \ge 100 x L_{coo}$
- 2 weak cool cor >4 Gyr
- lobes/cavities c cool core

The X-ray Universe 2023

~45% of group-central AGN over-powered and/or inflating cavities outside cool core (c.f. Donohue & Voit 2022)

0:56:00.0

CLoGS: Evidence of cooling

- CO detection fraction: 49±9%
- compare with 22±3% for Atlas3D ellipticals (similar survey depth)
- HI detection fraction >50% (from literature) $M_{HI} = 5 \times 10^6 3 \times 10^{10} M_{\odot}$
- Large gas mass not required for AGN outburst
- Largest CO masses found mainly in X-ray faint groups → difficult to explain as IGrM cooling

DDICUTECT

Summary

groups, including several newly detected in X-rays:

- Recent / current jet activity observed in ~40% of X-ray bright groups.
 - ~45% of jets appear over-powered relative to cooling and in some cases are inflating lobes outside the cooling region.
- Cool gas (CO, HI, H α) is detected in >50% of group-central galaxies.
 - BGGs of X-ray bright groups typically host filamentary nebulae and/or kpcscale disks, consistent with gas cooling from the IGrM.
 - Greatest cold gas masses seen in BGGs of X-ray faint groups, typically in large-scale disks. These BGGs are often fast rotators, star-forming.
 - Galaxy interactions can be a significant source of cold gas for BGGs.
 - Powerful radio galaxies can be fueled by relatively small gas reservoirs.

Based on CLoGS, an optically-selected, statistically complete sample of nearby

