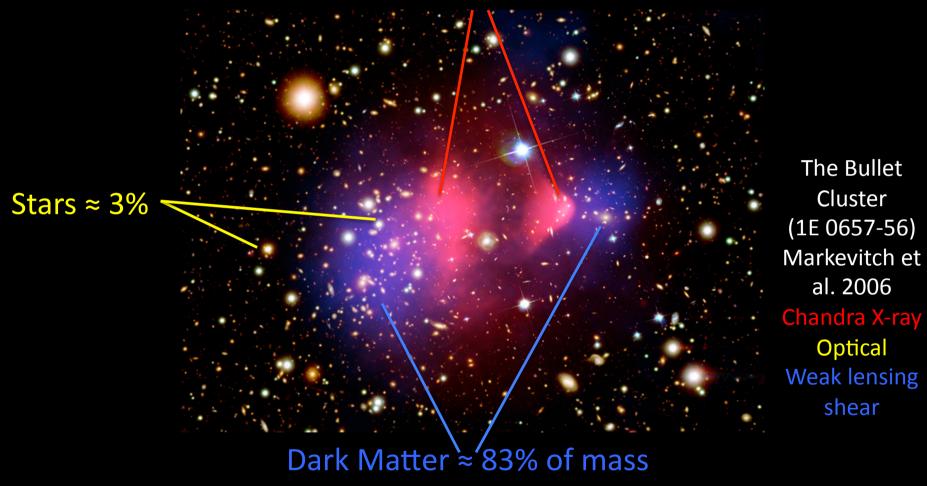
AGN Feedback in Galaxy Groups: A Combined X-ray/Low-Frequency Radio View

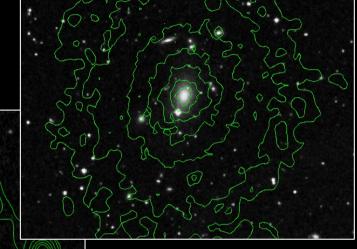
Ewan O'Sullivan
(University of Birmingham/SAO)

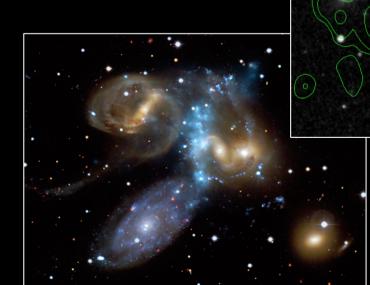

With thanks to: Simona Giacintucci, Larry David, Jan Vrtilek, Somak Raychaudhury,

Overview

- Background
 - Galaxy Clusters and Galaxy Groups
 - Why do we need Feedback?
 - What forms could Feedback take?
- The GMRT Groups Project
- Results from two groups
 - NGC 5044
 - AWM 4
- Future Plans

Galaxy Groups & Clusters - Constituents



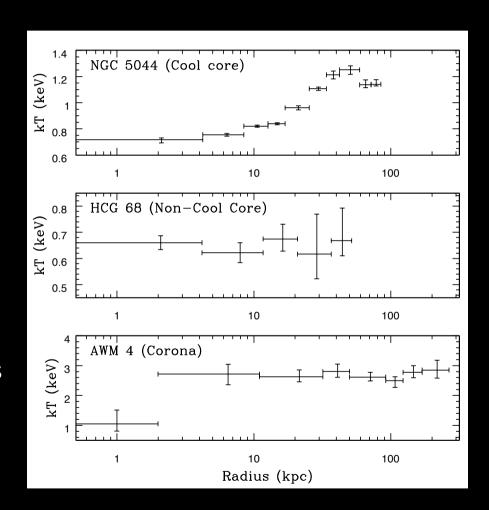


In clusters, the dominant baryonic component is 10⁷ K gas.

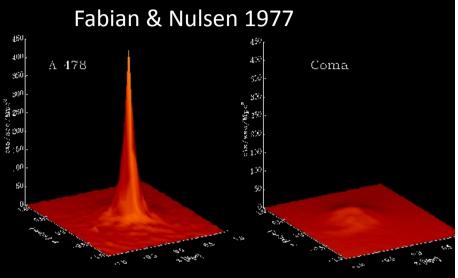
Groups – A Diverse Class

Variation from low-mass, spiral-only, X-ray faint groups (e.g., local group) to massive, X-ray bright mini-clusters.

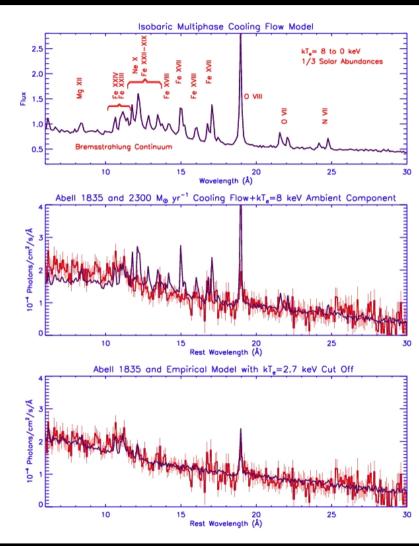
AWM4
Dominant gE + many
smaller galaxies


HCG 15 multiple E & S0s

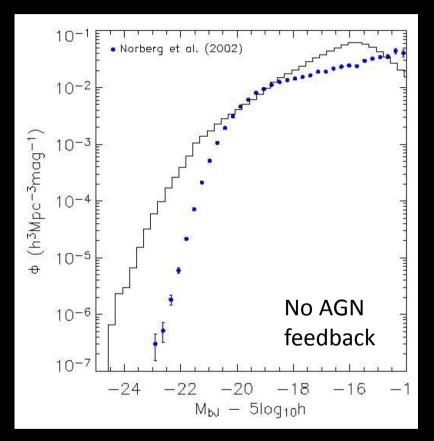
Stephan's Quintet (HCG 92) Spiral-rich (O'Sullivan et al. 2009)


Lunch talk, University of Crete

Groups & Clusters – Temperature Structure


- X-ray bright groups and clusters are usually classified as cool-core or non-cool-core.
- In clusters there are is a roughly even split between CC & NCC.
- Few NCC groups are observed but we do not know if this is real or a sign of bias.
- New class Coronae cool cores only a few kpc across, smaller than the central galaxy. Properties (L_x,T_x) indicate the cool gas is material lost from stars, not cooled cluster gas (M. Sun et al.).

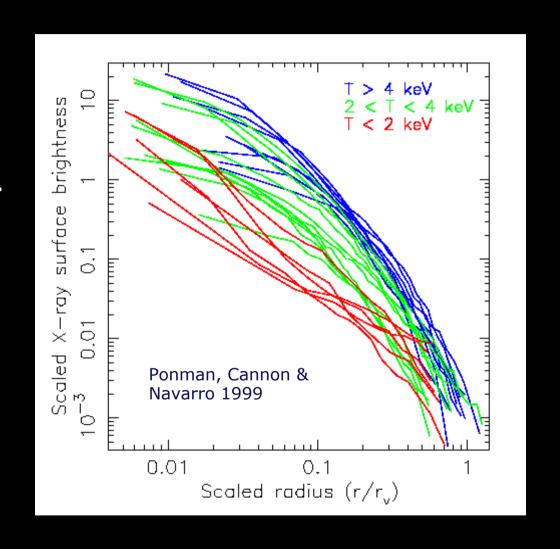
Why feedback is necessary - cooling flows




- Relaxed clusters expected to have central cooling flows.
- XMM/Chandra show little gas cooler than $kT_{max}/3$.
- What suppresses cooling?

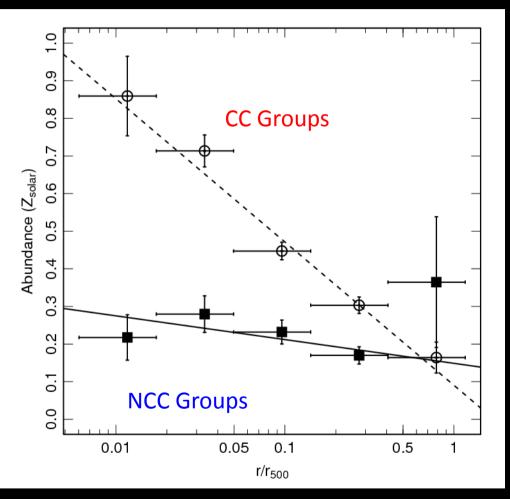
Peterson & Fabian 2006

Why feedback is necessary - overcooling



Croton et al. 2004

Cosmological simulations without feedback produce too many stars and too many high-mass galaxies.


Why feedback is necessary – similarity breaking

- Simplest models of clusters and groups are self-similar – everything scales simply with mass.
- Observations show similarity breaking.
- Cooler (less massive) systems have flatter emissivity and gas density profiles.

Abundance gradients

- XMM study of 28
 nearby groups (2dXGS)
 find that non-cool-core
 groups have flat
 abundance profiles.
- CC groups have steep profiles, probably from SNae in central galaxy.
- CC and abundance peaks probably destroyed by same process

Johnson et al., MNRAS submitted

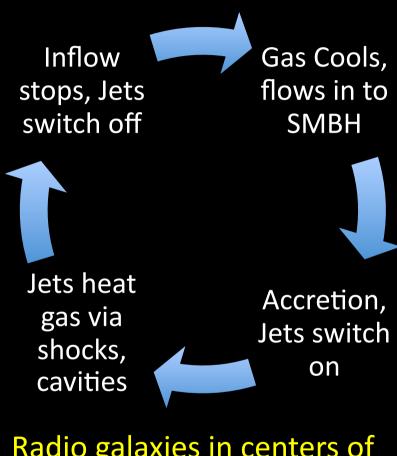
Potential sources of heating

1. Mergers

- Large energy release, few 10⁶³ erg. √
- Only a few systems merging at any time.
- Do not break similarity. X

2. Supernovae

- Inject ~1 keV/particle, OK for similarity breaking. ✓
- Little star formation in group/cluster cores. X
- More use in galaxies / small groups. ✓


3. Conduction

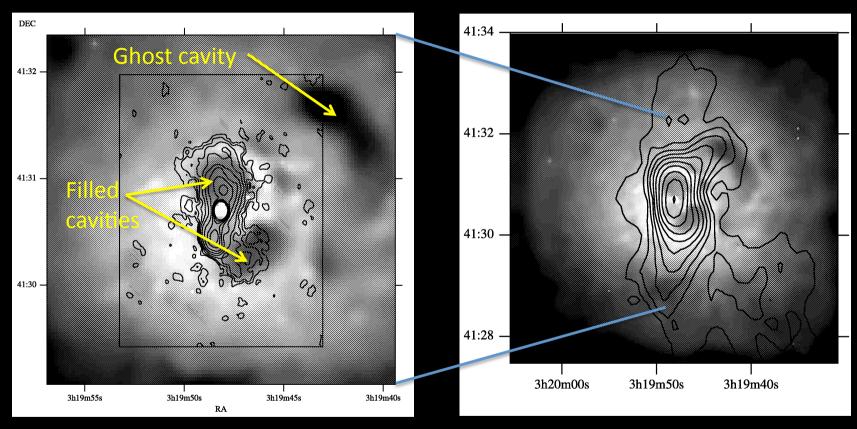
- Could stabilise NCC. ✓
- Requires >Spitzer conductivity to heat cool cores. X
- Magnetic suppression a serious problem.

4. AGN

- AGN common in CC systems.
- Feedback model ties heating to cooling. ✓
- Heating occurs where most needed.

Sources of heating: AGN feedback

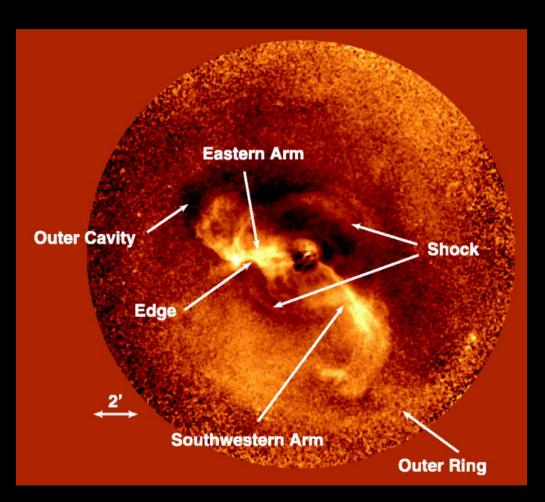
Radio galaxies in centers of 70-100% of CC clusters


(Blanton et al. 2010)

Chandra/VLA 1.4 GHz (Kirkpatrick et al. 2009)

Ghost cavities

Perseus cluster - Fabian et al. 2002


1.4 GHz on smoothed X-ray

74 MHz on smoothed X-ray

No radio emission (at >1 GHz) corresponding to cavity → "Ghost". Lobes rise buoyantly, so those at larger radii in clusters are older.

AGN feedback: shocks

- Shocks seen in some clusters, can deliver as much power as jets.
- May be driven by jets, or "explosively" from the AGN itself.
- Usually require Chandra to detect – narrow features, need spectra to confirm.

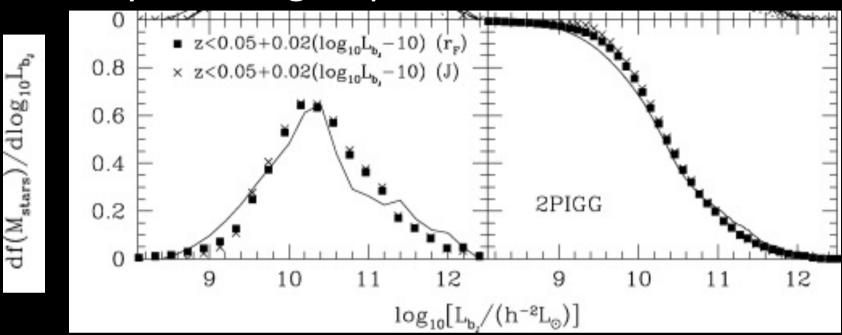
M87 / Chandra X-ray / Forman et al. 2007

Summary so far...

- Why do we need feedback
 - To suppress cooling in CC groups and clusters.
 - To suppress star formation at high redshift.
 - To explain similarity breaking.
 - To destroy abundance peaks in NCC systems?
- What form does feedback take?
 - AGN, fuelled by cooling gas, creating shocks and cavities.
 - Star-formation, mergers, conduction can help in some cases but are probably not the dominant process.

The GMRT Groups project

No statistical sample of nearby groups currently available!

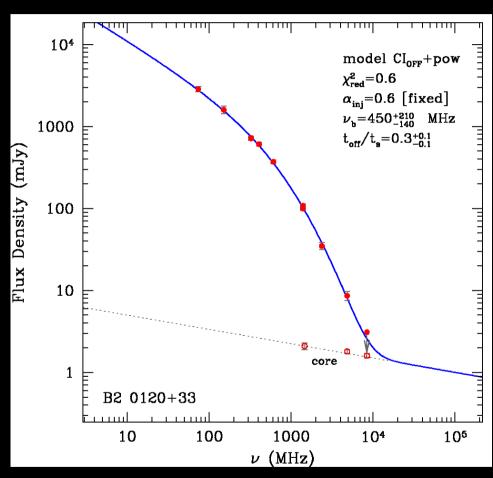

Our sample – 18 groups with Chandra/XMM X-ray data and GMRT low-frequency radio observations, covering a wide range of group and radio galaxy properties.

X-ray provides - 1) Location/properties of most baryons

2) Estimation of energy in cavities, shocks, conduction & cooling rates.

- 3) Dynamical limits of age of structures.
- 4) Information on gas motions.
- Radio provides 1) Timescales via Synchrotron aging.
 - 2) Constraints on source geometry.
 - 3) Direct view of AGN/gas interactions.

Why look at groups rather than clusters?


Eke et al. (2005) Log Stellar Mass 10, 11, 12 ≈ Log Total Mass 12, 13.6, 14.7

- 1. Only 2% of stars are found in clusters ($\log L_B/L_{\odot} > 12$)
 - Half of all stars in systems with $\log L_B/L_\odot = 10-11$ -- galaxies & small groups
 - Massive groups (log $L_B/L_{\odot} \approx 11$) most typical environment of AGN feedback
- 2. Groups are locus of much galaxy evolution, so impact of feedback important
- 3. Lower mass and temperature mean feedback needed on short timescales and has potential to affect IGM more easily than in clusters.

Why low-frequency radio?

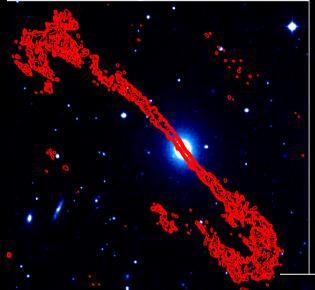
- As radio plasma ages, highfrequency declines fastest → older structures easier to see at lower frequencies.
- Spectral index measured at high frequency steep, broader spectrum gives better estimate of total power.
- Break frequency allows age to be estimated.

GMRT sensitivity (for 2-3hr obs.): rms $\approx 50\text{-}100~\mu\text{Jy/b}~$ @ 610 MHz rms $\approx 300\text{-}500~\mu\text{Jy/b}$ @ 235 MHz

NGC 507 (Murgia et al. in prep.)

Resolution: 5" at 610 MHz to 12" at 235 MHz (HPBW)

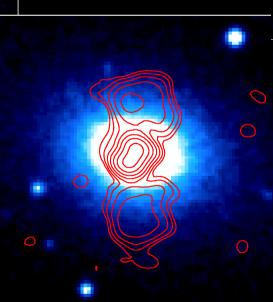
GMRT groups – project goals


- 1. How are X-ray and radio structures correlated?
 - Do radio lobes always form cavities? How do AGN drive gas mixing?
- 2. What are the properties of group central radio galaxies?
 - e.g., outburst timescale & energy, duty cycle, particle content of lobes, etc. Can AGN alone balance cooling in groups?
- 3. How are the effects of AGN related to their lifecycle and environment?
- 4. What are the mechanisms of energy injection?
 - How is the jet energy distributed isotropically? How is heating spread over the activity cycle?
- 5. Is feedback in groups and clusters similar?
 - Similarity breaking suggests groups have different history is this related to feedback?

GMRT Groups sample

GROUP	Z	Chandra	XMM	150 MHz	235 MHz	327 MHz	610MHz	Papers?
UGC 408	0.0147	✓		~	✓		√	CfA in prep
NGC 315	0.0165	✓	✓		√		√	
NGC 383	0.0170	✓	✓		√		√	
NGC 507	0.0165	✓	✓		√		√	
NGC 741	0.0185	✓	✓		√		√	Jetha 08 +
HCG 15	0.0208		✓		√	√	√	
NGC 1407	0.0059	✓	✓		√	~	√	
NGC 1587	0.0123	✓			√		√	
MKW 2	0.0368		✓		√		√	
NGC 3411	0.0153	✓	✓		✓		√	O'S 07
NGC 4636	0.0031	✓	✓		√		√	O'S 05 + Baldi 09
HCG 62	0.0137	✓	✓		√	~	√	Gitti (ApJ sub.)
NGC 5044	0.0090	√	✓	✓	√	√	√	David 09 +
NGC 5813	0.0066	✓	✓	✓	√			CfA in prep
NGC 5846	0.0057	✓	✓				√	
AWM4	0.0318	✓	✓		✓	√	√	SG 08+2xO'S 10
NGC 6269	0.0348	✓			√		√	Baldi 09
NGC 7626	0.0114	√	✓	~	√		√	Randall 09

GREEN = images/fluxes/spectra available RED = approved or unprocessed


<u>Groups - diverse radio morphologies</u>

NGC 7626 - classic giant radio galaxy

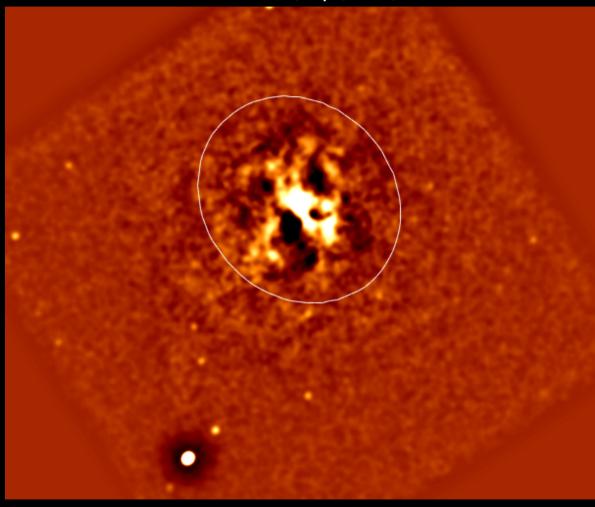
610 MHz, res: 6"x5"

Major axis: 150 kpc

NGC 3411 - amorphous 610 MHz, res: 10"x7"

Major axis: 75 kpc

NGC 6269 - compact double-lobed source

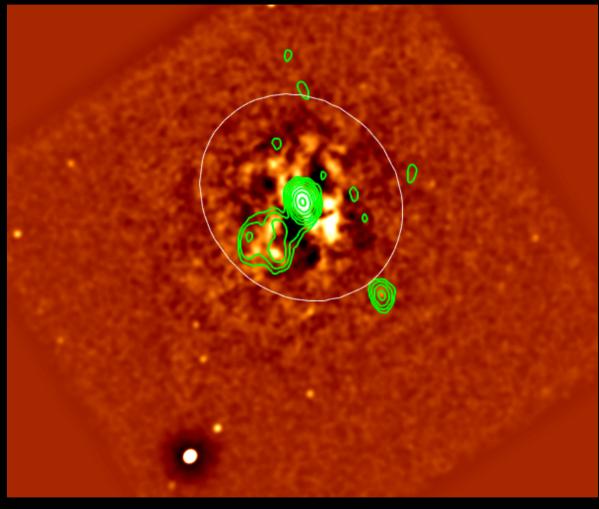

610 MHz, res: 5"x4"

Major axis: 30 kpc

NGC 5044 – *Chandra* X-ray

- One of the brightest nearby galaxy groups (~10⁴³ erg/s)
- Prior observations reveal some structure in X-ray, radio point source
- X-ray image shows numerous cavities, filaments, fronts.
- Cavities are small but spread throughout the core, not just along main axis.
- At 1.4 GHz, only a central point source is detected.

David et al. 2009, ApJ, 705, 624



80ks 0.3-2 keV Chandra unsharp image, D₂₅ ellipse overlaid

NGC 5044 – GMRT radio

At 610 Mhz:
Radio structure is
extended – rising torus
drawing out X-ray
filament?

David et al. 2009, ApJ, 705, 624

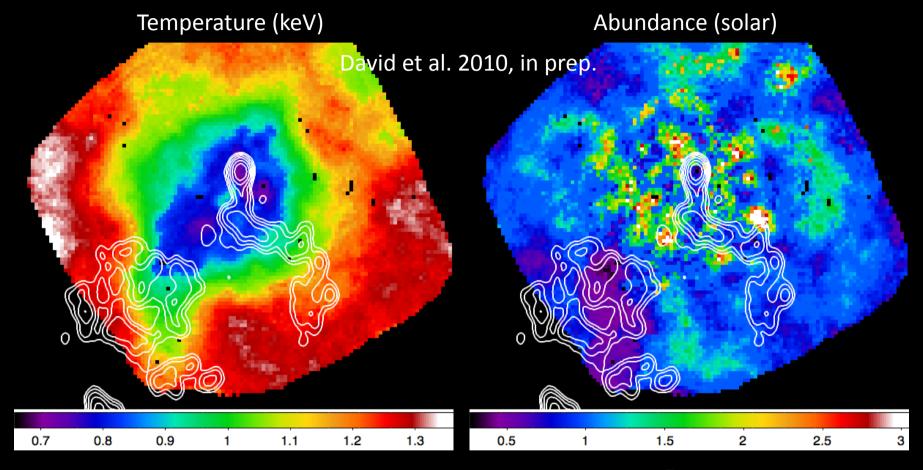
0.3-2 keV Chandra unsharp image, D_{25} ellipse overlaid GMRT 610 MHz contours

Lunch talk, University of Crete

NGC 5044 – GMRT radio

At 235 MHz:

- 1. Detached radio lobe to the SE.
- Filament following X-ray channel
- 3. Correlation between X-ray surface brightness front, filament and detached lobe.

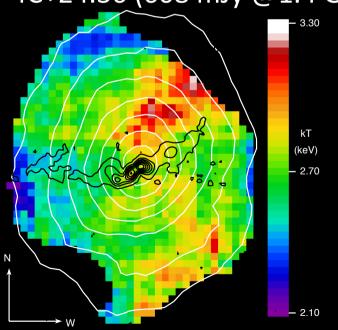

We are seeing structures formed in two separate outbursts, and their interaction with the environment.

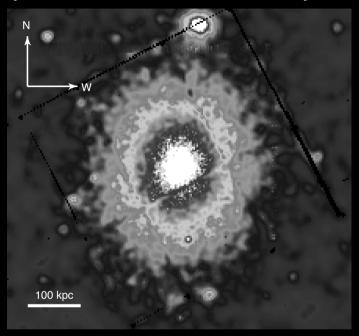
David et al. 2009, ApJ, 705, 624 **Cold Front**

0.3-2 keV Chandra unsharp image, D₂₅ ellipse overlaid GMRT 610 MHz contours 235 MHz contours

Lunch talk, University of Crete

NGC 5044 – X-ray spectral maps

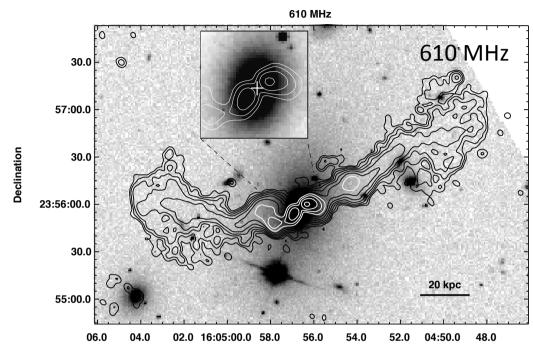

- Temperature drawn out to SE, following detached lobe → gas motion.
- High abundance features (2-3 solar!), low abundances regions correlate with cavities, radio structure → multiphase gas.
- Many small outbursts, cavities spread isotropically in core by gas motions.

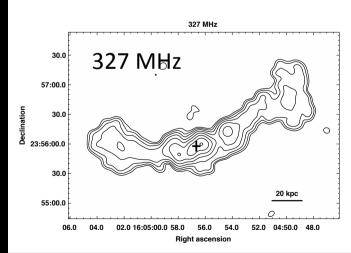

NGC 5044: Take-home points

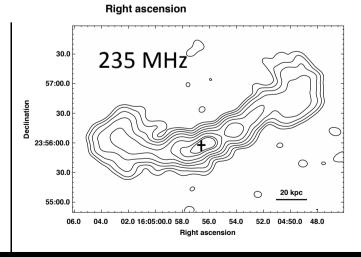
- Low-frequency radio observations allow us to see evidence of multiple episodes of AGN jet activity
 - direct measurement of the duty cycle.
 - Not unique, we see multiple episodes in other groups In our sample.
 - BUT in NGC 5044 we need deeper radio to measure the age and estimate the duty cycle.
- Many small cavities seen throughout the core
 - mechanism for isotropic heating by jets & cavities.
 - Cavities probably moved by "weather", gas motions caused by movement of galaxy in group, effects of the AGN itself.
 - Gas motions lift cool gas out of group core, reducing its cooling rate.
 - Group core contains multiphase gas, implications for abundance measurements and pressure balance, mass measurements, etc.

AWM4: XMM-Newton data (O'Sullivan et al. 2005)

- ~2.6 keV poor cluster, relaxed morphology centred on BCG, no X-ray AGN
- No obvious substructure in galaxy population
- Fairly powerful central radio source
 4C+24.36 (608 mJy @1.4 GHz)

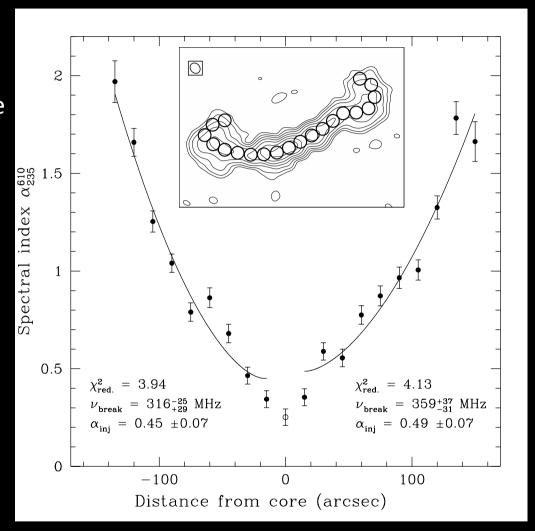



Surprises:


- Isothermal no cool core despite radio galaxy
- Lobes too small to heat system
- ~9x10⁵⁸ erg required

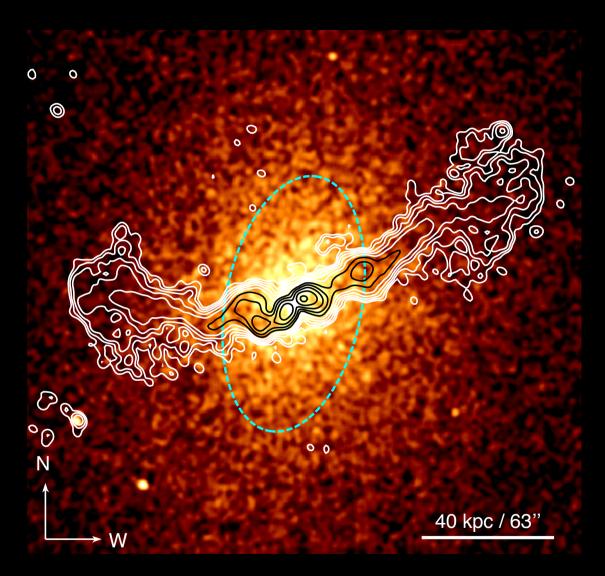
AWM4: GMRT observations (Giacintucci et al. 2008)

- GMRT data to determine true extent of radio source, alignment, properties.
- •120min @ 610 MHz, 100@ 327 MHz, 160@ 235 MHz
- Large lobes detected
- 1.4 GHz obs only trace jets out to knots/bends
- Small scale jets <10° from plane of sky

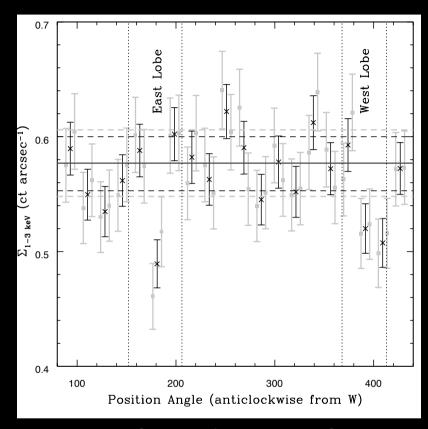


AWM4: radio source properties

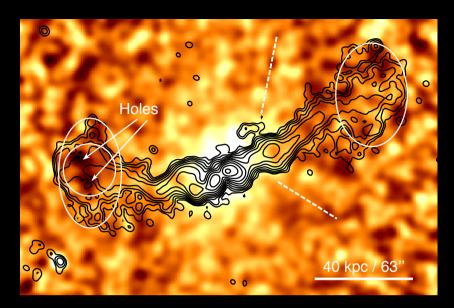
- Model spectral index change along jets with Jaffe & Perola (1974) model
- Both jets give similar results
- Age ~170 Myr very old (few 10s Myr typical)
- Pressure in lobes ~2.5x10⁻¹² erg cm⁻³ -- factor ~15 lower than X-ray pressure, but this is common
- If lobes are empty, their enthalpy (4PV) might be enough to counter cooling, but no cavities detected by XMM.

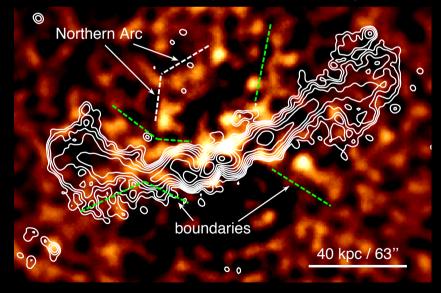

Giacintucci et al. 2008

AWM4: unresolved questions


- 1. What fuels the AGN?
 - No cool core detected.
 - No indications of merger or cold gas in BCG.
- 2. Can the AGN balance cooling? How does it heat the gas?
 - Cavities associated with the lobes would be sufficient, but none detected by XMM.
 - No shocks detected but XMM probably would not resolve them.
- Why is the AGN so old?

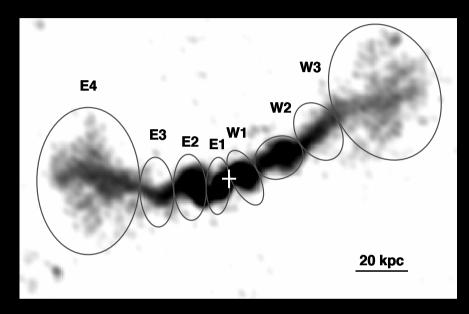
AWM4: Chandra imaging


- ~80 ks exposure
- No shocks or fronts
- No clear cavities
- Slight offset of BCG to south of halo centroid in motion as radio suggests?


AWM4: Cavities?

- >3σ significant drop in surface X-ray brightness in E lobe, but smaller than the lobe cavity?
- Broader, less significant western feature, weak filaments along jets?

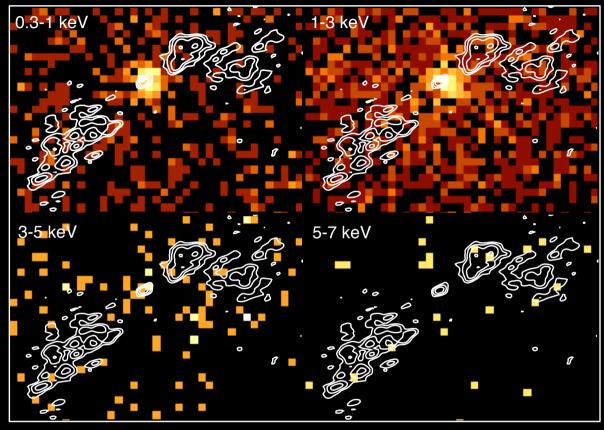
1-3 keV unsharp masked image


0.7-3 keV smoothed residual map

AWM4: Cavity Filling Factors

 We would expect to detect empty cavities for both lobes at 4-5σ significance → somehow the cavities are "filled in".

Possibilities:


- 1. Expected Inverse-Compton flux from radio lobes a factor 10⁻⁴ too low.
- 2. Gas entrained and heated in the jets would be too hot (20+ keV) and low density.
- 3. Mixing of the lobes with surrounding thermal plasma. Lobes probably breaking up into clouds and filaments.

GMRT 610 MHz image (c/o Giacintucci)

Assuming lobes are mix of thermal and relativistic plasmas, the filling factors of radio-emitting component are: $\phi = 0.21 / 0.24$ for east/west lobes (3 σ upper limits ϕ <0.43 / 0.76)

AWM4: looking for a cool core

Raw Chandra images, 4.9 GHz VLA contours

- Small extended core source in soft bands (<3 keV), coincident with radio core.
- 3-5 keV counts consistent with LMXBs → AGN highly absorbed.
- Probable galactic corona cool core made up of gas from the galaxy halo.

AWM4: the Corona

- 2-3 kpc radius, correlated with jet flare point
- ~1 keV compared to 2.6 keV ICM
- $L_x^2 x 10^{40} \text{ erg/s}$
- t_{cool} =300 Myr, M_{cool} =0.067 Msol/yr
 - enough to fuel AGN given 0.1% efficiency
- Stellar mass losses in corona sufficient to replace gas lost through cooling.
- Spitzer conduction would heat in <20 Myr
- Jet would heat if interaction >0.4% efficient
 - → Magnetically isolated from AGN & ICM
 - → Breaks feedback cycle the AGN does not reheat the gas which fuels is, so outburst is not self-limiting.

AWM4: Take-home points

- The cavities in AWM4 are much weaker than expected.
 - → The lobes are breaking up and mixing with the ICM.
 - Outburst in AWM4 is unusually old, and we only see the lobes because we have low-frequency radio data. Do all lobes break up this way?
 - Low filling factors mean less energy available to heat the ICM, but break up could lead to heating via plasma mixing, gas motions.
- AWM4 hosts a corona of cool galactic gas, which can fuel the AGN indefinitely and is not heated by conduction or the jets.
 - → This breaks the AGN feedback loop.
 - May explain why outburst is so old, as feedback cannot stop it.
 - How did the corona form in the first place?
- Even with small cavities, AGN power output balances cooling.

Future Plans

GMRT Groups Project:

- Radio (Giacintucci et al.) and X-ray (O'Sullivan et al.) sample papers later this year.
- GMRT coverage extended to 150 MHz for some sources, providing possibility of detecting even older emission.

CLoGS: The Complete Local-Universe Groups Survey

- Statistically complete, optically selected sample of 53 nearby groups, excluding uncollapsed and false systems.
- First half proposed for *Chandra* in March if successful this will be the first statistical X-ray sample of nearby groups.