### A Combined X-ray/Low-Frequency Radio View of AGN Feedback in Galaxy Groups



Ewan O'Sullivan (University of Birmingham/SAO)



With thanks to: Simona Giacintucci (Maryland), Larry David, Jan Vrtilek (SAO), Myriam Gitti (Bologna) S. Raychaudhury, A. Sanderson & T.J. Ponman (Birmingham)

#### **Overview**

- Background
  - Why do we need feedback?
  - Why look at groups rather than clusters?
- The GMRT Groups Project
- Results
  - HCG 62 & NGC 5044 benefits of low-frequency observations
    - isotropic heating
  - AWM 4 radio lobes without cavities?
    - galactic coronae and the AGN duty cycle.
  - AGN Jets Mechanical power vs. radio power.
- Future Plans



### Why feedback is necessary - cooling flows





- Relaxed clusters expected to have central cooling flows.
- XMM/Chandra show little gas cooler than  $kT_{max}/3$ .
- What suppresses cooling?







Peterson & Fabian 2006



#### AGN feedback as observed in clusters





Unsharp X-ray image (Forman et al. 2007)

X-ray/VLA 1.4 GHz (Kirkpatrick et al. 2009)

- Radio galaxies in centers of 70-100% of CC clusters (Blanton et al. 2010)
- Cavities form in pairs, rise buoyantly, radio emission fades.
- Heating via shocks, PdV work done by expanding cavities, etc.



#### Why feedback is necessary - overcooling



Croton et al. 2004

Cosmological simulations without feedback produce too many stars and too many high-mass galaxies.



#### Why look at groups rather than clusters?



Eke et al. (2005) Log Stellar Mass 10, 11, 12 ≈ Log Total Mass 12, 13.6, 14.7

- 1. Only 2% of stars are found in clusters (log  $L_B/L_{\odot} > 12$ )
  - Half of all stars in systems with log  $L_{\rm B}/L_{\odot}$  = 10-11 -- galaxies & small groups.
  - Massive groups (log  $L_B/L_{\odot} \approx 11$ ) most typical environment of feedback.
- 2. Groups are locus of much galaxy evolution, so impact of feedback important
- 3. Lower mass and temperature mean feedback needed on short timescales and has potential to affect IGM more easily than in clusters.



#### **Groups – A Diverse Class**

Variation from low-mass, spiral-only, X-ray faint groups (e.g., local group) to massive, X-ray bright mini-clusters.



AWM4
Dominant gE + many
smaller galaxies

HCG 15 multiple E & S0s

Stephan's Quintet (HCG 92) Spiral-rich (O'Sullivan et al. 2009)

#### Why look at groups? - Abundance gradients





- Clusters have abundance gradient regardless of CC/NCC.
- NCC groups have much flatter abundance gradient than CC.
- Either CC and abundance peaks never form, or they are destroyed, probably by the same process → gas mixing?



## **Groups & Clusters – Temperature Structure**

- Usually classified as cool-core or non-cool-core.
- In clusters, CC/NCC split is roughly 50/50.
- Few NCC groups are observed but we have no statistical sample.
- New class Galactic Coronae.
   Small cool cores only a few kpc across (Sun et al. 2007, 2009).
- kT, L<sub>x</sub>, Abundance consistent with being gas from stellar mass loss, not intra-cluster medium.
- Strong kT jump at boundary conduction suppressed by magnetic fields.





#### Coronae vs Large Cool Cores

Core L<sub>X</sub> vs BCG L<sub>radio</sub> (Sun 2009)

FR-I radio galaxies in BCGs all located in cool core of some kind.

Radio power not related to type of cool core – coronae can power strong AGN outbursts





#### The GMRT Groups project

No statistical sample of nearby groups currently available! Our sample - 18 groups with Chandra/XMM X-ray data and GMRT low-frequency radio observations, covering a wide range of group and radio galaxy properties.

- X-ray provides 1) Location/properties of most baryons.
  - 2) Estimation of energy in cavities,

shocks, conduction & cooling rates.

- 3) Dynamical limits of age of structures.
- 4) Information on gas motions.
- Radio provides 1) Timescales via Synchrotron aging.
  - 2) Constraints on source geometry.
  - 3) Direct view of AGN/gas interactions.

### Why low-frequency radio?

- As radio plasma ages, highfrequency declines fastest → older structures easier to see at lower frequencies.
- Spectral index measured at high frequency steep, broader spectrum gives better estimate of total power.
- Break frequency allows age to be estimated.

GMRT sensitivity (for 2-3hr obs.):  $rms \approx 50\text{-}100~\mu Jy/b~$  @ 610 MHz  $rms \approx 300\text{-}500~\mu Jy/b~$  @ 235 MHz



NGC 507 (Murgia et al. 2011)

Resolution: 5" at 610 MHz to 12" at 235 MHz (HPBW)



#### **GMRT** groups – project goals

- 1. What are the properties of group-central AGN?
  - Power output, activity timescale, can they balance cooling?
- 2. What are the mechanisms of feedback heating?
  - Are shocks/cavities dominant? How is energy spread isotropically?
- 3. How are X-ray and radio structures correlated?
  - Do radio jets always inflate cavities? Do AGN drive gas mixing?
- 4. How are the effects of AGN related to their lifecycle and environment?
- 5. What is the relationship between radio luminosity and power output for AGN jets? How reliable is it?

#### **GMRT Groups sample**

| GROUP    | Z      | Chandra  | XMM      | 150 MHz | 235 MHz  | 327 MHz | 610MHz   | Papers?           |
|----------|--------|----------|----------|---------|----------|---------|----------|-------------------|
| UGC 408  | 0.0147 | ✓        |          | ✓       | <b>√</b> |         | ✓        | CfA in prep       |
| NGC 315  | 0.0165 | <b>✓</b> | ✓        |         | ✓        |         | ✓        |                   |
| NGC 383  | 0.0170 | <b>✓</b> | <b>✓</b> |         | ✓        |         | ✓        |                   |
| NGC 507  | 0.0165 | <b>✓</b> | <b>✓</b> |         | ✓        |         | ✓        |                   |
| NGC 741  | 0.0185 | ✓        | 1        |         | ✓        |         | ✓        | Jetha 08          |
| HCG 15   | 0.0208 |          | ✓        |         | ✓        | ✓       | ✓        |                   |
| NGC 1407 | 0.0059 | <b>✓</b> | ✓        |         | ✓        | ✓       | ✓        | SG in prep.       |
| NGC 1587 | 0.0123 | ✓        |          |         | ✓        |         | ✓        |                   |
| MKW 2    | 0.0368 |          | ✓        |         | ✓        |         | ✓        |                   |
| NGC 3411 | 0.0153 | ✓        | ✓        |         | ✓        |         | ✓        | O'S 07            |
| NGC 4636 | 0.0031 | ✓        | ✓        |         | ✓        |         | ✓        | Jones, O'S, Baldi |
| HCG 62   | 0.0137 | <b>✓</b> | ✓        |         | ✓        | ✓       | ✓        | Gitti 10          |
| NGC 5044 | 0.0090 | <b>✓</b> | ✓        | ✓       | ✓        | ✓       | ✓        | David 09 & 11     |
| NGC 5813 | 0.0066 | ✓        | ✓        | ✓       | ✓        |         |          | Randall 11        |
| NGC 5846 | 0.0057 | ✓        | ✓        |         |          |         | ✓        | Machacek 11       |
| AWM4     | 0.0318 | <b>✓</b> | ✓        |         | ✓        | ✓       | ✓        | SG 08, O'S10&11   |
| NGC 6269 | 0.0348 | <b>✓</b> |          |         | ✓        |         | ✓        | Baldi 09          |
| NGC 7626 | 0.0114 | ✓        | <b>✓</b> | ✓       | <b>✓</b> |         | <b>✓</b> | Randall 09        |

GREEN = images/fluxes/spectra available RED = unprocessed



# Cavities in groups: HCG 62 (Gitti et al. 2010)





- Enthalpy of cavities =  $4pV = 2.1 \times 10^{57}$  erg. Power =  $1.5 \times 10^{43}$  erg/s
- Low-frequency radio sensitive to older electron population, reveals previously unknown outer lobes.



### NGC 5044 – *Chandra* X-ray (David et al. 2009)

- One of the brightest nearby galaxy groups (~10<sup>43</sup> erg/s)
- Prior observations reveal some structure in X-ray, radio point source
- X-ray image shows numerous cavities, filaments, fronts.
- Cavities are small but spread throughout the core, not just along main axis.
- At 1.4 GHz, only a central point source is detected.





### NGC 5044 – GMRT radio (David et al. 2009)

At 610 Mhz:
Radio structure is
extended – rising torus
drawing out X-ray
filament?





### NGC 5044 – GMRT radio (David et al. 2009)

#### At 235 MHz:

- 1. Detached radio lobe to the SE.
- Filament followingX-ray channel
- 3. Correlation
  between X-ray
  surface brightness
  front, filament and
  detached lobe

We are seeing structures formed in two separate outbursts, and their interaction with the environment.





## NGC 5044 – X-ray spectral maps (David et al. 2009, 2011)



- Temperature drawn out to SE, following detached lobe → gas motion.
- High abundance features (2-3 solar!), low abundances regions correlate with cavities, radio structure → multiphase gas.
- Many small outbursts, cavities spread isotropically in core by gas motions.



#### HCG 62 and NGC 5044: Take-home points

- Many small cavities seen throughout the core → mechanism for isotropic heating by jets & cavities.
  - Cavities probably moved by "weather", gas motions caused by movement of galaxy in group, effects of the AGN itself.
  - Gas motions lift cool gas out of group core, reducing its cooling rate.
  - Group core contains multiphase gas, implications for abundance measurements and pressure balance, mass measurements, etc.
- Low-frequency radio observations allow us to see evidence of multiple episodes of AGN jet activity → direct measurement of the duty cycle.
  - Not uncommon, we see multiple episodes in other groups (e.g., NGC 5813, Randall et al. 2011).
  - BUT gas motions make dynamical age estimates uncertain. New, deep radio data will allow comparison with radiative ages.



### AWM 4: Background (O'Sullivan et al. 2005, Giacintucci et al. 2008)

- ~2.6 keV relaxed poor cluster.
- 4C radio source (608 mJy @1.4 GHz).
- XMM finds no cool core or cavities.
- GMRT data shows radio source very old, ~170 Myr (few 10s Myr typical).





- Small-scale jets aligned <10° from sky.</li>
- Lobe radio pressure lower than ICM thermal pressure by factor ~15 (as usual).



#### **AWM4: Chandra observations**

(O'Sullivan et al. 2010, 2011)



- ~80 ks exposure
- No shocks or fronts
- No clear cavities
- Slight offset of BCG to south of halo centroid – in motion as radio suggests?

#### **AWM4: Cavities?**



- >3σ significant drop in surface
   X-ray brightness in E lobe, but
   smaller than the lobe cavity?
- Broader, less significant western feature, weak filaments along jets?



1-3 keV unsharp masked image



0.7-3 keV smoothed residual map



#### **AWM4: Cavity Filling Factors**

We would expect to detect empty cavities for both lobes at  $4-5\sigma$  significance  $\rightarrow$  somehow the cavities are "filled in".

#### Possibilities:

- 1. Expected Inverse-Compton flux from radio lobes a factor 10<sup>-4</sup> too low.
- 2. Entrainment of ICM or stellar gas in the jets, without significant heating or mixing.
- Mixing of the lobes with surrounding thermal plasma.
   Lobes possibly breaking up into clouds and filaments.



GMRT 610 MHz image (c/o Giacintucci)

Assuming lobes are mix of thermal and relativistic plasmas, the filling factors of radio-emitting component are:

 $\Phi$  = 0.21 / 0.24 for east/west lobes (3 $\sigma$  upper limits  $\Phi$ <0.43 / 0.76)



#### AWM4: looking for a cool core



Raw Chandra images, 4.9 GHz VLA contours

- Small extended source in soft bands (<3 keV), coincident with radio core.</li>
- 3-5 keV counts consistent with LMXBs → AGN highly absorbed.
- Probable galactic corona cool core made up of gas from the galaxy halo.



#### AWM4: the Corona

- 2-3 kpc radius, correlated with jet flare point
- ~1 keV compared to 2.6 keV ICM
- $L_x^2x10^{40} \text{ erg/s}$
- $t_{cool}$ =300 Myr,  $M_{cool}$ =0.067 Msol/yr
  - enough to fuel AGN given 0.1% efficiency
- Stellar mass losses in corona sufficient to replace gas lost through cooling.
- Spitzer conduction would heat in <20 Myr</li>
- Jet would heat if interaction >0.4% efficient
  - → Magnetically isolated from AGN & ICM
  - Breaks feedback cycle the AGN does not reheat the gas which fuels is, so outburst is not self-limiting.



#### **AWM4: Take-home points**

- The cavities in AWM4 are much weaker than expected.
  Are the lobes mixing with the ICM? Filled by entrained gas?
  - Plasmas still magnetically separated, little direct heating.
  - Outburst in AWM4 is unusually old, and we only see the lobes because we have low-frequency radio data. Do all lobes end up in this state?
  - Low filling factors mean less energy available to heat the ICM, but AGN power output still balances cooling.
- AWM4 hosts a corona of cool galactic gas, which can fuel the AGN indefinitely and is not heated by conduction or the jets.
  - This breaks the AGN feedback loop.
  - May explain age of outburst, as feedback may not be able to stop it.
  - Coronae are common at least 2 other examples in our sample.



#### AGN jets: mechanical power vs radio power

In the local Universe, we can measure P<sub>jet</sub> directly using the cavity enthalpy (E=4pV) and buoyancy time. Measuring the P<sub>jet</sub>:P<sub>radio</sub> relation allows us to:

- 1. Examine the physical conditions inside radio jets.
- 2. Estimate the amount of feedback heating provided by AGN when cavities & shocks are not directly observable (e.g., at high redshift).
- Birzan et al (2004, 2008) used sample of ~25 clusters, VLA 1.4 GHz and 327 MHz data.
- Cavagnolo (2010) add 21 ellipticals, but with poor, lowresolution 200-400 MHz data.



We add 9 groups, with high-quality
 GMRT 235 MHz data.



### AGN jets: Mechanical power vs radio power Why is this relation important?

- $P_{jet} = kP_{radio}^{\eta}$
- Impact of population of AGN jets depends on gradient  $\eta$  of  $P_{mech}$ :  $P_{radio}$  relation.
  - Bolometric AGN LF (Hopkins et al. 2007)
  - Jet heating, gradient = 0.87
  - Jet heating, gradient = 0.4





### AGN jets: mechanical power vs radio power (O'Sullivan et al. 2011)



• Birzan et al used BCES Y X fit, Cavagnolo and our fits use BCES orthogonal.



### AGN jets: mechanical power vs radio power (O'Sullivan et al. 2011)

- Integrated radio power accounts for differences in spectral index → should be better estimator of jet power than single frequency.
- Birzan et al. again used BCES
   Y | X fit, we use orthogonal.
- Orthogonal fit to Birzan data gives gradient =  $0.78 \pm 0.30$ .
- Birzan et al. spectral indices from KP model fit to 3+ freqs.
- We use 610-235 MHz indices, improved fits in progress.



10 MHz-10 GHz Radio Luminosity



# Mechanical power vs radio power: comparison of BCES orthogonal fits

| Frequency     | Sample     | Gradient  | Total Scatter | Intrinsic Scatter |
|---------------|------------|-----------|---------------|-------------------|
| 1.4 GHz       | Birzan     | 0.57±0.17 | 0.88          | 0.85              |
|               | Cavagnolo  | 0.75±0.14 | 0.78          | -                 |
|               | O'Sullivan | 0.63±0.10 | 0.68          | 0.65              |
| 200-400 MHz   | Birzan     | 0.67±0.19 | 0.80          | 0.76              |
|               | Cavagnolo  | 0.64±0.09 | 0.64          | -                 |
|               | O'Sullivan | 0.71±0.11 | 0.62          | 0.58              |
| 10MHz – 10GHz | Birzan     | 0.68±0.19 | 0.80          | 0.76              |
|               | O'Sullivan | 0.71±0.11 | 0.63          | 0.59              |

- Low-frequency or broad-band measures more reliable (less scatter).
- Willott et al. (1999) predict gradient = 0.86 from synchrotron theory.
- BUT Willott assumes spectral index  $\alpha$ =0.5 . For free spectral index, gradient will be 3/( $\alpha$ +3), e.g. gradient=0.76 for our typical  $\alpha$ =0.95.



#### Mechanical power vs radio power: Caveats

- Cavity power may be a poor measure of jet power!
  - Energy in shocks can be 5-10x energy of cavities.
  - Buoyancy timescale is not always appropriate.
  - Young cavities likely to be missed. Detection of old cavities dependent on depth of data, radio freqs available.
  - Jet orientation.
  - AGN weather.
  - Filling factors <1 (c.f. AWM4).</li>
- Correcting groups where possible flattens relation.



10 MHz-10 GHz Radio Luminosity



# Mechanical power vs radio power: Take-home points

- Low-frequency or integrated radio measurements are a more reliable predictor of jet power.
  - 1.4 GHz data, while readily available, produces less reliable relations because of the effects of spectral aging.
- Samples including groups (and ellipticals) provide better constraints on the P<sub>iet</sub>:P<sub>radio</sub> relations.
  - Our best fits give gradient ~0.7±0.1 with intrinsic scatter ~0.6 dex.
  - Theoretical predictions of gradient=0.86 may be too steep, having assumed spectral index  $\alpha$ =0.5.
- Uncertainties on the mechanical power output of jets are large (factor of ~10).
  - further work needed to produce more reliable jet power estimates.

# CLoGS: The Complete Local-Volume Groups Survey



- Statistically complete, optically selected sample of 53 nearby groups, excluding uncollapsed and false systems.
- First sample with complete coverage in X-ray (Chandra/XMM-Newton) and radio (GMRT 235 & 610 MHz).
- Observations of richer half of sample will be almost complete by 2012.
  - 50 ks Chandra GTO, 279 ks XMM-Newton, 76 hrs GMRT approved.

