

Ewan O'Sullivan (University of Birmingham)

With thanks to:

S. Raychaudhury & T.J. Ponman (Birmingham), S. Giacintucci (Maryland), L. David & J. Vrtilek (SAO), M. Gitti (Bologna)

I will talk about:

- The outskirts of groups & clusters
- Gas motions & metallicity
- AGN heating (radio jets)
 - How do AGN heat the hot gas in groups/clusters?
 - How much power is available?
 - Over what timescales?
- Galactic coronae

Important issues I won't talk about:

- Turbulence & magnetic fields
- Groups & clusters at moderate redshift.
- Low-mass groups / formation of IGrM.

Outskirts of Clusters and Groups

Suzaku slices through the Perseus Galaxy Cluster

Tracing Perseus and Virgo to virial radius (Simionescu et al. 2011; Urban et al. 2011).
Deviations from expected radial profiles, to lower temperatures, higher densities.

Clumping in Perseus and Virgo

 Taken at face value, spectra indicate f_{gas}> universal f_{baryon}, and deviation of entropy from r^{1.1} scaling.

Explanations:

- 1. Electron-lon equilibration issues (Akamatsu 2011, Kawaharada 2010)
 - Can explain low kT but not high densities?
- Clumping: Outside R₅₀₀ ICM contains small clumps of cool gas which dominate Xray emission (Simionescu et al 2011; Urban et al. 2011)

Clumping: problems to be resolved

- Do we see clumping in all 1. clusters & groups?
 - Vikhlinin: Yes in A133
 - E. Miller: No (one cluster, eight more TBD).
 - Kawaharada: Yes in A1689, but not in one quadrant.
 - Humphrey: No in fossil group RXJ 1159+5531
- How big are the clumps? 2.
 - Simionescu: 5kpc
 - Vikhlinin: 50-100 kpc
- What is their origin? 3.

0.1

0.01

 $(2.2 [sqdeg] \approx 11.7 \times 11.7 [h^{-2} Mpc^{2}])$

A1689

Gas motions & metallicity: AGN outflows

3.3 keV cluster, outburst energy= 10^{61} erg Outflow extent 120 kpc, M_{Fe} 2-7x10⁷ M_{\odot} 5% of outburst energy needed to lift gas

2.4 keV cluster, outburst energy = $\sim 5 \times 10^{58}$ erg Extent of outflow = 35 kpc Fe mass uplifted = 1.4×10^6 M_{\odot} ~10% of outburst energy required for uplift.

>10 examples known (Kirkpatrick et al. 2011) Outflow radius $R_{fe} \alpha P_{jet}^{0.42}$

Gas motions & metallicity: sloshing

>60% of CC clusters show evidence of sloshing (Johnson et al., in prep.)

- Mixing: High metallicity gas pushed outward, high entropy gas drawn into core. In Virgo, ~8% of metals uplifted by sloshing, 2% by AGN (Simionescu et al. 2010)
- Magnetic fields: Sharp edges of cold fronts indicate suppressed conduction.

Sloshing also affects groups: NGC 5044

- Paired cold fronts (Gastaldello et al. 2009).
- BGG offset from group mean velocity by 150 km/s (Mendel et al. 2008).
- Also seen in IC 1860 (Gastaldello et al., in prep.), NGC 5098 (Randall et al. 2009)

How do AGN heat gas? I. Shocks

- Best understood method of heating, probably occur in most systems, but difficult to observe.
- Typically weak shocks (Mach < 2).

Example: NGC 5813 (Randall et al. 2011)

- Two shocks and three pairs of cavities
- Outburst power varies by factor ≥ 6 .
- Energy in shocks: 0.2-3x10⁵⁷ erg (40-80% of total outburst energy).
- Sufficient heating from shocks to balance cooling in central 10 kpc (assuming 10% efficiency) without cavity contribution.

How do AGN heat gas? II. Cavities

Smoothed Chandra 0.3-2 keV residual images

235 MHz GMRT contours

- Cavities inject pV energy via expansion, turbulence in wake
- HCG62 cavities are paired, NGC5044 cavities isotropically distributed by gas motions.
- Low-frequency radio reveals outer lobes, unclear from X-ray or high-freq. radio

What happens to old radio lobes? (How do we get the other 3pV energy out?)

Virgo/M87 VLA 330 MHz

Age of outer "mushroom" lobes: few $x10^7 - 10^8$ yr.

Groups and Clusters of Galaxies: Confronting Theory with Observations

Leiden, 27 July 2011

Is there enough power to balance cooling?

Pcav=4pV/t_{buoy}

Power needed to balance cooling:

- In clusters: 4PV
- In groups/ellipticals: 1PV
 Scatter at least a factor of 4

Uncertainties:

- Shocks factor ~10?
- Buoyancy times factor ~5?
- Viewing angle factor 3 (Mendygral et al. 2011)
- Gas motions / AGN "weather"
- Old/young cavities undetected.

AGN outbursts: timescales

- What is the (radio) AGN duty cycle? 10⁷ yr on in every 10⁸?
- Systems with multiple shocks or cavity-pairs:

System	Feature	Interval (yr)	
NGC5813	Shocks	1 x10 ⁷	Randall et al. (2011)
HCG62	Lobes/cavities	5 x10 ⁷	
NGC5044	Lobes/cavities	3 x10 ⁷	
Perseus	Cavities	5-7 x10 ⁷	Dunn et al. (2006)
Hydra	Cavities	7-25 x10 ⁷	Wise et al. (2007)

→Interval between outbursts varies by factor >10.

 Outburst duration can be comparable to this interval: AWM4 still active after 17x10⁷ yr, NGC4261 still expanding near-sonically after ~6.5x10⁷ yr.

Galactic Coronae (Sun et al. 2007, Sun 2009)

- Small-scale cool cores (<10 kpc radius) in group/cluster dominant galaxies.
- → Difficult to detect, especially at z>0.1
- Sharp temperature gradient
- (e.g., 4 keV in < 2 kpc)
- Spitzer conduction would heat coronae on short timescales (<~10⁷ yr).
- ➔ Magnetic isolation.
- Heating by AGN jets would destroy coronae if more than ~1% efficient.
- → Breaks AGN feedback cycle!
- Stellar mass loss in BCG ≈ cooling rate
 → Self-sustaining?

Groups and Clusters of Galaxies: Confronting Theory with Observations

Leiden, 27 July 2011

Coronae as radio galaxy hosts (Sun 2009)

- Coronae and Large Cool Cores host equally powerful radio sources.
- In LCCs: $L_{radio} \alpha L_{cool}$.
- In coronae:
 - L_{radio} is independent of L_{cool} .
- In groups, the most powerful radio sources (L_{1.4GHz}>10²⁴ W/ Hz) are only found in coronae
- corona radio sources effective in preventing formation of LCCs in groups?

Caveats affecting groups

- In clusters we can easily select representative samples, examine both population properties and detailed physics.
- Very few representative group samples are available.
 - Optical selection very unreliable for small numbers of galaxies.
 - Nearby X-ray selected samples biased toward centrally peaked systems (Eckert et al. 2011), e.g., 85% of groups in Dong et al. (2010) are CC.
 - X-ray selection at moderate-z may be better, but groups are faint, so studies of detailed physics (cooling, mixing, feedback, etc.) are difficult.
 - Detailed group studies focus on individual systems, or small non-statistical samples.

CLOGS: The Complete Local-Volume Groups Sample

www.sr.bham.ac.uk/~ejos/CLoGS.html

- Complete, optically-selected sample of 53 groups:
 - 4+ galaxies, 1+ early-type
 - D<80 Mpc
 - Dec. > -30° (VLA & GMRT)
- Avoids bias toward cool-core systems in RASS-based X-ray samples (Eckert et al. 2011)
- Goal: complete coverage in X-ray (Chandra/XMM) and radio (GMRT 610 & 235 MHz).
- Richer half of will be almost complete by 2012.

 $\bigcirc \qquad (90 \mu Jy r.m.s., contours levels = 3,6,12 \sigma$) GMRT 610 MHz contours / SDSS g'-band

Open Questions

- For "jet-mode" feedback:
 - What happens to the extra energy available in groups?
 - How and where do we get the 3pV out of radio lobes? Mixing?
 - How is cavity/lobe energy isotropised? Gas motions?
 - Are galactic coronae doing something interesting?
- For "quasar-mode": Can we observationally determine whether QSOs are heating their environment and if so, how?
- Gas motions: Uplift/sloshing impacts many systems, affects metals, AGN, etc. Could this be important for cosmological simulations?
- Clumping in cluster outskirts: What is the origin of the clumps? Do they exist in groups as well?
- We all agree (?) groups are important how should we go about building representative, well-observed samples?