Effects of AGN and Mergers on the Cores of Galaxy Groups

Ewan Q'Sullivan

Harvard-Smithsonian Center for Astrophysics

with credit to

Jan Vrtilek & Larry David (C.f.A.)

Trevor Ponman & Alastair Sanderson (*Uni. of Birmingham*, *UK*)

Josh Kempner (*Bowdoin College*, *USA*)

X-ray halos of galaxy groups

- Galaxy groups bridge the mass range between massive,
 bright, well-studied clusters, and individual galaxy halos.
- Shallow potential wells mean smaller energy inputs are required to produce disturbed structures.
- Rapid cooling times should fuel central AGN outbursts.
- \Rightarrow Groups with central radio galaxies known to fall below L_X :T relation high kT or low L_X (Croston et al 2004)
- Galaxy infall and group mergers may also be important.
- ⇒ What kinds of interactions do we observe and how do they affect group properties (entropy, cooling time)?

Sample of X-ray bright groups

ROSAT 3/4 keV map with groups marked

- 23 Groups from XMM-Newton, 16 from Chandra
- 11 with high quality X-ray data, 5 have disturbed cores
- Effects of AGN & Mergers on Galaxy Groups

Ghost cavities: HCG 62

- Cavities clear in Chandra image (rare in groups)
- Energy required to inflate cavities (few 10⁵⁶ erg) sufficient to stop cooling
- Radio source extends over southern cavity (at 1.4 GHz), but is weak, L_R~2x10³⁸ erg/s
- $\sim 10^{42}$ erg/s outburst $< 2x 10^7$ yr ago.
- See Morita et al (2006) + poster upstairs for more details

Smoothed Chandra image, VLA radio contours

Jet-driven shock heating: AWM 4

- Isothermal (2.6 keV) to >250 kpc radius. Not a post-merger system
- kT and Abundance maps reveal strong AGN interaction shock NW of core coincident with highly enriched gas (O'Sullivan et al 2005a)
- 10^{59} erg required to produce isothermal core, but radio source very powerful ($L_{radio}=9x10^{41}$, $L_{mech}=3x10^{43}$ erg s⁻¹) for a group
- Effects of AGN & Mergers on Galaxy Groups

Shocks and cavities: NGC 4636

- Radio source only slightly extended, $L_{\text{radio}}=1.4 \times 10^{38} \text{ erg s}^{-1}$, jet power < $3 \times 10^{41} \text{ erg s}^{-1}$ (Bicknell et al 1997)
- •'Spiral-arms' are weak shocks with energy $\sim 6x10^{56}$ erg from outburst few 10^6 ago (Jones et al 2002)
- Cavity to East visible only in temperature map, requires ~3x10⁵⁷ erg to inflate over few 10⁷ yr (O'Sullivan et al 2005b)
- Effects of AGN & Mergers on Galaxy Groups

Gas mixing and IGM enrichment: NGC 4636

• ~3x10⁸ M_☉ of cool, enriched gas in plume extending 30 kpc

Effects of AGN & Mergers on Galaxy Groups

Garching, August 2006

Gas motions in NGC 507

- FR-I radio galaxy (Parma et al 1996) with enough power to stop cooling (few 10⁵⁸ erg to inflate cavities)
- See also Tracy Clarke's talk
- Coolest and highest abundance gas displaced ~25 kpc from galaxy core.
- Surface brightness edge caused by combination of T and Z features (Kraft et al 2004)
- Effects of AGN & Mergers on Galaxy Groups

Group / group merger: NGC 507 / NGC 499

- NGC 499 center of second peak in group X-ray halo
- ⇒ Likely group/group or galaxy/group merger, but is NGC 499 going North or South?
- Brief Chandra observation misses area between galaxies
- XMM observation only covers NGC 507, but new XMM observation coming...

ROSAT PSPC contours on DSS image

NGC 3411: Galaxy infall and stripping?

1.00

• Cool gas from infalling elliptical galaxy?

• Stripped gas sinks until point of equal entropy is reached, surrounds core

• $M_{gas} = 3.4 \times 10^9$ \checkmark

Effects of AGN & Mergers on Galaxy Groups

• Problems: nearby galaxies are spirals or S0s, why group core hot before infall?

Garching, August 2006

- $\geq 2 \times 10^{57}$ erg required to reheat cool core over ~ 30 Myr
- VLA high resolution data reveals no jet, only small scale diffuse emission.
- $L_{\text{radio}}=3x10^{38} \text{ erg s}^{-1} \text{ but } L_{\text{cool}}=10^{42} \text{ erg s}^{-1} \Rightarrow \text{core is cooling.}$
- Effects of AGN & Mergers on Galaxy Groups

Summary of AGN activity

Group	Features observed	Energy (erg)	L _{radio} (erg s ⁻¹)	Age (yr)
		(015)	(CISS)	(31)
HCG62	Ghost cavities	$5x10^{56}$	$9x10^{37}$	$2x10^7$
NGC 3411	Reheated core	$2x10^{57}$	$3x10^{38}$	$3x10^7$
NGC 4636	Weak shocks, cavities,	$3x10^{57}$	10^{38}	$5x10^{7}$
	gas motion (30 kpc)	$(3x10^{56})$		(10^6)
NGC 507	Radio lobes, gas motion	$8x10^{58}$	~1040	Now
	(25 kpc)			
AWM 4	Shocks, isothermal core	$9x10^{58}$	$9x10^{40}$	Now
	gas motion (35 kpc)			

Entropy Profiles

- Most relaxed systems decline smoothly
- HCG 62, NGC 4636, NGC 3411 also decline in core
- AWM 4, NGC 507 have shallower gradients and higher entropy in core
- Small outbursts have little long-term effect on S ⇒ Weak shocks?
- Ongoing, strong heating is visible

Cooling Time Profiles

- NGC 3411, NGC 4636, HCG 62 all have short central T_{cool} despite heating (and mixing).
- AWM 4 and NGC 507 have flatter profiles, $T_{cool} > 10^9$ yr at small radii.
- Mild AGN outbursts stop cooling but T_{cool} unchanged?

Conclusions

- Many of the best observed groups have disturbed structures in their cores (and there will be cases we cannot detect).
- AGN appear to provide enough energy to balance cooling.
- Wide range of total power from outbursts $(10^{56}-10^{59} \text{ erg})$
- ⇒ Low power heating process adiabatic (weak shocks?)
- \Rightarrow More powerful outbursts do affect core entropy, T_{cool} , and can erase cooling cores completely (AWM 4)
- AGN may also mix group gas, transporting metals out to enrich the halo or broaden central abundance peak.
- Group mergers and galaxy infall may cause heating and mixing of gas, but as yet few systems have been studied in detail. Watch this space...