

Ewan O'Sullivan (University of Birmingham/SAO)

With thanks to: S. Giacintucci (Maryland), M. Gitti (Bologna), S.Raychaudhury, K. Kolokythas & T.J. Ponman (Birmingham), C.H. Ishwara Chandra & N. Kantharia (NCRA), R. Athreya (IISER), L. David & J. Vrtilek (SAO)

Overview

- Background
 - Why is feedback important?
 - Why look at groups rather than clusters?
- Sample
- Results
 - HCG 62, NGC 5813 & NGC 5044 multiple AGN outbursts.
 - isotropic heating.
 - AWM 4 radio lobes without cavities?
 - galactic coronae and the AGN duty cycle.
 - AGN Jets Mechanical power vs. radio power.
- Future prospects: CLoGS

Galaxy Groups & Clusters - Constituents

Dark Matter ≈ 83% of mass

In clusters, the dominant baryonic component is 10⁷ K gas.

NCRA Seminar

30 January 2012

Why feedback is necessary - cooling flows

Fabian & Nulsen 1977

- Relaxed clusters expected to have central cooling flows.
- XMM/Chandra show little gas cooler than $kT_{max}/3$.
- What suppresses cooling?

Peterson & Fabian 2006

PER AD ARDUA ALTA

The AGN feedback cycle (as observed in galaxy clusters)

Inflow Gas Cools, stops, Jets flows in to switch off **SMBH** Repeat every ~10⁸ years? Jets heat Accretion, gas via Jets switch shocks, on cavities 70-100% of CC clusters have

70-100% of CC clusters have central FR-I radio galaxies (Blanton et al. 2010)

Chandra/VLA 1.4 GHz (Kirkpatrick et al. 2009)

Why feedback is necessary - overcooling

Croton et al. 2004

Cosmological simulations without feedback produce too many stars and too many high-mass galaxies.

Why look at feedback in galaxy groups?

- Groups contain >50% of stars in the local Universe and most of the baryons.
- Group environment key to galaxy evolution, in which AGN play an important role.
- AGN Feedback in groups must be fine tuned. Outbursts should be weaker but occur more often (e.g., Gaspari et al. 2011)

Groups – A Diverse Class

Variation from low-mass, spiral-only, X-ray faint groups (e.g., local group) to massive, X-ray bright mini-clusters.

AWM4
Dominant gE + many
smaller galaxies

HCG 15 multiple E & S0s

Why look at groups? - Abundance gradients

cool core
non-cool core
best-fit power law

0.01

- Clusters have abundance gradient regardless of CC/NCC.
- NCC groups have much flatter abundance gradient than CC.
- Either CC and abundance peaks never form, or they are destroyed → AGN driven gas mixing?

0.1

Radius (r₅₀₀)

0.1

PER AD ARDIA ALTA

Groups & Clusters – Temperature Structure

- Usually classified as cool-core or non-cool-core.
- In clusters, CC/NCC split is roughly 50/50.
- Few NCC groups are observed but we have no statistical sample.
- New class Galactic Coronae.
 Small cool cores only a few kpc across (Sun et al. 2007, 2009).
- kT, L_x, Abundance consistent with being gas from stellar mass loss, not intra-cluster medium.
- Strong kT jump at boundary → conduction suppressed by magnetic fields.

NCRA Seminar

Coronae vs Large Cool Cores

Core L_X vs BCG L_{radio} (Sun 2009)

FR-I radio galaxies in BCGs all located in cool core of some kind.

Radio power not related to type of cool core – coronae can power strong AGN outbursts

The Sample

No statistical X-ray sample of nearby groups currently available!

Our sample — 18 groups with *Chandra/XIMM* X-ray data and *GMRT* low-frequency radio observations, covering a wide range of group and radio galaxy properties.

- X-ray provides 1) Location/properties of most baryons.
 - 2) Estimation of energy in cavities, shocks, conduction & cooling rates.
 - 3) Dynamical limits of age of structures.
 - 4) Information on gas motions.
- Radio provides 1) Timescales via Synchrotron aging.
 - 2) Constraints on source geometry.
 - 3) Direct view of AGN/gas interactions

Groups sample: available data

GROUP	Z	Chandra	XMM	150 MHz	235 MHz	327 MHz	610MHz	Papers?
UGC 408	0.0147	✓		✓	1		✓	CfA in prep
NGC 315	0.0165	✓	✓		\checkmark		✓	
NGC 383	0.0170	✓	✓		✓		✓	
NGC 507	0.0165	✓	✓		✓		✓	
NGC 741	0.0185	✓	✓		✓		✓	Jetha 08
HCG 15	0.0208		✓		✓	✓	✓	
NGC 1407	0.0059	✓	✓		✓	✓	✓	SG in prep.
NGC 1587	0.0123	✓			✓		✓	
MKW 2	0.0368		✓		✓		✓	
NGC 3411	0.0153	✓	✓		✓		✓	O'S 07
NGC 4636	0.0031	✓	✓		✓		✓	Jones, O'S, Baldi
HCG 62	0.0137	✓	✓		✓	✓	✓	Gitti 10
NGC 5044	0.0090	✓	✓	✓	✓	✓	✓	David 09 & 11
NGC 5813	0.0066	✓	✓	✓	✓			Randall 11
NGC 5846	0.0057	✓	✓				✓	Machacek 11
AWM4	0.0318	✓	✓		✓	✓	✓	SG 08, O'S10&11
NGC 6269	0.0348	✓			✓		✓	Baldi 09
NGC 7626	0.0114	✓	✓	✓	✓		✓	Randall 09

GREEN = images/fluxes/spectra available RED = unprocessed

Why low-frequency radio?

- As radio plasma ages, highfrequency declines fastest → older structures easier to see at lower frequencies.
- Broader spectrum gives better estimate of total power.
- Break frequency allows age to be estimated.

GMRT sensitivity (for 2-3hr obs.):

 $rms \approx 50-100 \mu Jy/b @ 610 MHz$

 $rms \approx 300-500 \mu Jy/b @ 235 MHz$

Resolution: Radio: 5" at 610 MHz to

12" at 235 MHz (HPBW)

X-ray: 0.5" Chandra / 6" XMM (FWHM)

NGC 507 (Murgia et al. 2011)

Project goals

- 1. What are the properties of group-central AGN?
 - Power output, activity timescale, can they balance cooling?
- 2. What are the mechanisms of feedback heating?
 - Are shocks/cavities dominant? How is energy spread isotropically?
- 3. How are X-ray and radio structures correlated?
 - Do radio jets always inflate cavities? Do AGN drive gas mixing?
- 4. How are the effects of AGN related to their lifecycle and environment?
- 5. What is the relationship between radio luminosity and power output for AGN jets? How reliable is it?

Cavities in groups: HCG 62

(Gitti et al. 2010)

- Enthalpy of cavities = $4pV = 2.1 \times 10^{57}$ erg. Power = 1.5×10^{43} erg/s
- Low-frequency radio sensitive to older electron population, reveals previously unknown outer lobes.

NCRA Seminar

Shocks in NGC5813 (Randall et al. 2011)

- Difficult to observe require highquality Chandra data to measure temperature jump.
- Typically weak shocks (Mach < 2).
 In NGC 5813:
- Two shocks and three pairs of cavities
- Outburst power varies by factor ≥6.
- Energy in shocks: 0.2-3x10⁵⁷ erg
 (40-80% of total outburst energy).
- Sufficient heating from shocks to balance cooling in central 10 kpc (assuming 10% efficiency) without cavity contribution.

NGC 5044 — Chandra X-ray (David et al. 2009)

- One of the brightest nearby galaxy groups (~10⁴³ erg/s)
- Prior observations reveal some structure in X-ray, radio point source
- X-ray image shows numerous cavities, filaments, fronts.
- Cavities are small but spread throughout the core, not just along main axis.
- At 1.4 GHz, only a central point source is detected.

NGC 5044 – GMRT radio

(David et al. 2009)

At 235 MHz:

- 1. Detached radio lobe to the SE.
- Filament followingX-ray channel
- 3. Correlation
 between X-ray
 surface brightness
 front, filament and
 detached lobe

We are seeing structures formed in two separate outbursts, and their interaction with the environment.

PER AD ARDUA ALTA

NGC 5044 – X-ray spectral maps (David et al. 2009, 2011)

- Temperature drawn out to SE, following detached lobe → gas motion.
- High abundance features (2-3 solar!), low abundances regions correlate with cavities, radio structure → multiphase gas.
- Many small outbursts, cavities spread isotropically in core by gas motions.

HCG 62, NGC 5813, NGC 5044: Take-home points

- Many small cavities seen throughout the core → mechanism for isotropic heating by jets & cavities.
 - Cavities probably moved by "weather", gas motions caused by movement of galaxy in group, effects of the AGN itself.
 - Gas motions lift cool gas out of group core, reducing its cooling rate.
 - Group core contains multiphase gas, implications for abundance measurements and pressure balance, mass measurements, etc.
- Evidence of multiple episodes of AGN jet activity → direct measurement of the duty cycle.
 - BUT gas motions make dynamical age estimates uncertain. New, deep radio data will allow comparison with radiative ages.
- Both shocks and cavities may contribute to heating.

AWM 4: Background (O'Sullivan et al. 2005, Giacintucci et al. 2008)

- ~2.6 keV relaxed poor cluster.
- 4C radio source (608 mJy @1.4 GHz).
- XMM finds no cool core or cavities.
- GMRT data shows radio source very old, ~170 Myr (few 10s Myr typical).

- Small-scale jets aligned <10° from sky.</p>
- Lobe radio pressure lower than ICM thermal pressure by factor ~15 (as usual).

AWM4: Chandra observations

(O'Sullivan et al. 2010, 2011)

- ~80 ks exposure
- No shocks or fronts
- No clear cavities
- Slight offset of BCG to south of halo centroid – in motion as radio suggests?
- If lobes have formed cavities, Enthalpy ~10⁵⁹ erg.

AWM4: Cavities?

- >3σ significant drop in surface
 X-ray brightness in E lobe, but
 smaller than the lobe cavity?
- Broader, less significant western feature, weak filaments along jets?

1-3 keV unsharp masked image

0.7-3 keV smoothed residual map

AWM4: Cavity Filling Factors

We would expect to detect empty cavities for both lobes at $4-5\sigma$ significance \rightarrow somehow the cavities are "filled in".

Possibilities:

- 1. Expected Inverse-Compton flux from radio lobes a factor 10⁻⁴ too low.
- 2. Entrainment of ICM or stellar gas in the jets, without significant heating or mixing.
- Mixing of the lobes with surrounding thermal plasma.
 Lobes possibly breaking up into clouds and filaments.

GMRT 610 MHz image (c/o Giacintucci)

Assuming lobes are mix of thermal and relativistic plasmas, the filling factors of radio-emitting component are:

 Φ = 0.21 / 0.24 for east/west lobes (3 σ upper limits Φ <0.43 / 0.76)

AWM4: looking for a cool core

Raw Chandra images, 4.9 GHz VLA contours

- Small extended source in soft bands (<3 keV), coincident with radio core.
- 3-5 keV counts consistent with LMXBs → AGN highly absorbed.
- Probable galactic corona cool core made up of gas from the galaxy halo.

AWM4: the Corona

- 2-3 kpc radius, correlated with jet flare point
- ~1 keV compared to 2.6 keV ICM
- $L_x^2x10^{40} \text{ erg/s}$
- t_{cool} =300 Myr, M_{cool} =0.067 Msol/yr
 - enough to fuel AGN given 0.1% efficiency
- Stellar mass losses in corona sufficient to replace gas lost through cooling.
- Spitzer conduction would heat in <20 Myr
- Jet would heat if interaction >0.4% efficient
 - → Magnetically isolated from AGN & ICM
 - → Breaks feedback cycle the AGN does not reheat the gas which fuels is, so outburst is not self-limiting.

AWM 4: metal enrichment and transport

- Super-solar abundances extended along axis of radio jets.
- Unlikely to be formed in situ.
- \sim 10^9 M $_\odot$ gas entrained
- Requires ~1.6×10⁵⁷ erg, significant fraction of total jet energy.

AWM4: Take-home points

- The cavities in AWM4 are much weaker than expected.
 Are the lobes mixing with the ICM? Filled by entrained gas?
 - Plasmas still magnetically separated, little direct heating.
 - Outburst in AWM4 is unusually old, and we only see the lobes because we have low-frequency radio data. Do all lobes end up in this state?
 - AGN power output still balances cooling.
- AWM4 hosts a corona of cool galactic gas, which can fuel the AGN indefinitely and is not heated by conduction or the jets.
 - → Does this break the AGN feedback loop?
 - May explain age of outburst, as feedback may not be able to stop it.
 - Coronae are common see also O'Sullivan et al. 2011c on NGC 4261.
- Jets uplift metals from BCG, enriching the intra-group medium.

AGN jets: mechanical power vs radio power

- In the local Universe, we can estimate P_{jet} from cavity enthalpy (E=4pV) and buoyancy time.
- Measuring the P_{jet}:P_{radio} relation allows us to estimate the amount of feedback from radio alone (e.g., at high redshift).
- Birzan et al (2004, 2008) used sample of ~25 clusters, VLA 1.4
 GHz and 327 MHz data.
- Cavagnolo (2010) add 21 ellipticals, but with poor, lowresolution 200-400 MHz data.

 We add 9 groups, with highquality GMRT 235 MHz data.

AGN jets: mechanical power vs radio power (O'Sullivan et al. 2011)

• Birzan et al used BCES Y X fit, Cavagnolo and our fits use BCES orthogonal.

AGN jets: mechanical power vs radio power (O'Sullivan et al. 2011)

- Integrated radio power accounts for differences in spectral index → superior estimator of jet power.
- Birzan again used BCES Y \mid X, but Orthogonal fit would give gradient = 0.78 ± 0.30 .
- Synchrotron theory predicts gradient = 0.86 (Willott etal. 99)
- BUT Willott assumes spectral index α =0.5 . For free spectral index, gradient will be $3/(\alpha+3)$, e.g. gradient=0.76 for our typical α =0.95.

10 MHz-10 GHz Radio Luminosity

NCRA Seminar

Mechanical power vs radio power: Caveats

- Cavity power may be a poor measure of jet power!
 - Energy in shocks can be 5-10x energy of cavities.
 - Buoyancy timescale is not always appropriate.
 - Young cavities likely to be missed. Detection of old cavities dependent on depth of data, radio freqs available.
 - Jet orientation.
 - AGN weather.
 - Filling factors <1 (c.f. AWM4).
- Correcting groups where possible flattens relation.

10 MHz-10 GHz Radio Luminosity

Mechanical Power vs Cooling

Power needed to balance cooling:

- In galaxy clusters ~4PV.
- In groups only ~1PV
 (as for Ellipticals, Nulsen et al 2007).
- Scatter at least factor 4.

Factoring in shocks, AGN power output can reach $P_{iet} > 10 L_{cool}$

- Most powerful outbursts in this sample still have cool cores.
- But sample is <u>selected</u> to have jet/gas interactions...

(Bolometric L_X for region $t_{cool} \le 7.7$ Gyr)

PER AD ARDUA ALTA

Mechanical power vs radio power: Take-home points

- Low-frequency or integrated radio measurements are a more reliable predictor of jet power.
 - 1.4 GHz data, while readily available, produces less reliable relations because of the effects of spectral aging.
- Samples including groups (and ellipticals) provide better constraints on the P_{iet}:P_{radio} relations.
 - Our best fits give gradient ~0.7±0.1 with intrinsic scatter ~0.6 dex.
- Uncertainties on the mechanical power output of jets are large (factor of ~10).
 - further work needed to produce more reliable jet power estimates.

PER AD ARDUA ALTA

CLoGS: The Complete Local-Volume Groups Survey www.sr.bham.ac.uk/~ejos/CLoGS.html

- Aims to be the first statistically complete sample of nearby, optically-selected groups with X-ray (XMM/Chandra) and radio (GMRT 235/610 MHz) coverage.
- 53 nearby groups, D<80 Mpc, excluding uncollapsed and false systems.</p>
- So far 128 hrs GMRT, 50 ks Chandra GTO, 279 ks XMM-Newton approved.
- X-ray coverage of (statistically complete) richer half will be completed in 2012.
- Radio coverage of full sample hopefully complete as well...

GMRT 610 MHz contours / SDSS g'-band

CLoGS: first results

- XMM detects 0.5 keV group halo to ~85 kpc.
- GMRT detects SF in spirals, AGN in all galaxies.
- Group is faint ($L_X=2x10^{41}$) but falls on scaling relations (L:T, σ :T, etc)
- No cool core (at resolution 6.4 kpc).