The Complete Local-Volume Groups Sample: X-ray observations of optically selected groups

Ewan O'Sullivan (SAO)

The CLoGS collaboration

C.f.A.: E. O'Sullivan, J. Vrtilek, L. David, C. Jones, W. Forman

U. Of Birmingham, UK: T. Ponman

IUCAA, India: S. Raychaudhury, K. Kolokythas

Observatoire de Paris: F. Combes, P. Salome

U. of Victoria, Canada: A. Babul

NCRA-TIFR, India: N. Kantharia

NRL, USA: S. Giacintucci

INAF-O.A. Bologna, Italy: M. Gitti

INAF-O.A. Brera, Italy: C. Haines

All credit for radio analysis to Konstantinos Kolokythas Simona Giacintucci

Background: why do we need another group sample?

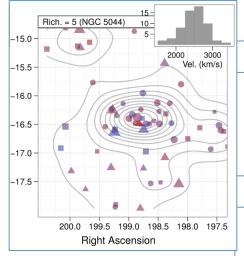
- We lack representative, unbiased samples
 - Optically-selected catalogs include false groups (chance associations, uncollapsed groups)
 - *SZ selection* ineffective for low-mass groups
 - X-ray selection guarantees bound groups but:
 - RASS-based surveys biased toward cool core systems (e.g., Eckert et al. 2011)
 - Samples from deeper surveys tend to be at moderate redshift where detailed morphology, AGN / cool core, interactions are tough to resolve
- CLoGS is intended to provide a statistically complete sample of nearby, optically-selected groups with high-quality X-ray and radio data.

CLoGS: Goals

- Physical properties of the nearby group population:
 - What fraction of optically-selected groups contain a hot IGM?
 - What is their range of mass, temperature, metal abundance, etc?
 - What fraction have cool cores?
 ~50% of clusters are CC (Sanderson et al 2006)
 archival samples of groups have up to 85% CC (e.g., Dong et al 2010)
 - Can we find unusual groups of types not identified by prior surveys? (e.g., the high entropy systems predicted by McCarthy et al. OWLS simulations)
- Central AGN as a group-scale feedback mechanism:
 - Do group-central AGN balance cooling? What is duty cycle, power?
 - How are central AGN affected by environment? Cool cores, entropy?
- Impact of group environment on member galaxies:
 - Is star formation rate affected by group environment?
 - What fraction of member galaxies host AGN? Radio, X-ray, optical?

Sample selection

Begin with Lyon Galaxy Groups (Garcia 1993)


All-sky, optically-selected, cz<5500 km s⁻¹ (D<80Mpc)

485 groups

67 groups

Select from LGG list: systems with

- >4 members
- ≥1 early-type member with L_B≥3×10¹⁰L_☉
- Declination >-30° (visible from VLA and GMRT)

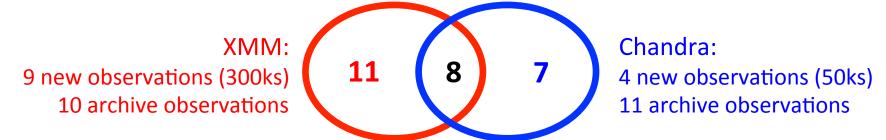
Expand and refine membership

- Update membership from HyperLEDA
- Use isodensity maps to reject problem cases

Filter on *richness* ($R = N_{gal}$ with $L_B \ge 1.6 \times 10^{10} L_{\odot}$)

- Exclude known clusters: R≥10
- Exclude groups too small to characterize: R=1

53 groups


26 groups
High-richness subsample (R=4-8)

27 groups
Low-richness subsample (R=2-3)

Observational data

◆ X-ray: complete for the high-richness subsample (26 groups)

Minimum sensitivity goal for new observations:

$$L_x \ge 1.2 \times 10^{42}$$
 erg s⁻¹ within R500
 $L_x \ge 3.9 \times 10^{41}$ erg s⁻¹ within R<65 kpc

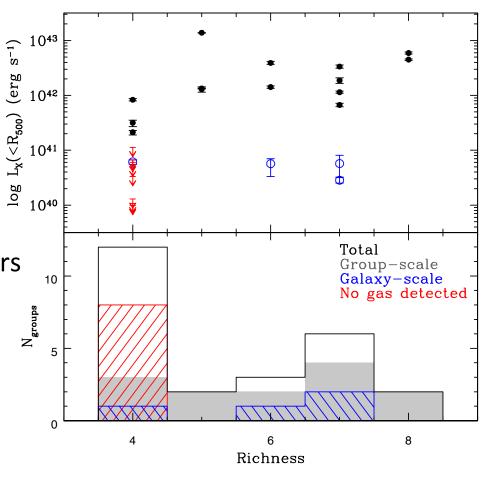
- 72% of entire sample has X-ray observations.
- ◆ Radio: GMRT 235/610 MHz observations complete for all 53 groups
 - Analysis of high-richness sample complete (Kolokythas et al., in prep.).
 - ~4hrs/target, rms ~0.1mJy/b @610 MHz, ~0.6mJy/b @ 235 MHz.
- igoplus Other bands: For subsets of systems we have IRAM 30m CO observations of dominant galaxies, H α imaging (Bok 2.3m or WIYN 0.9m) archival HI, etc.

CLoGS high-richness: X-ray overview

Of the 26-groups in the high-richness subsample:

- 14 (54%) have an X-ray bright IGM (extent >65 kpc, Lx>10⁴¹ erg/s)
- 4 (15%) have a galaxy-scale X-ray halo (extent < 65kpc, Lx= 10^{40} - 10^{41} erg/s)
- 8 have no detected X-ray halo (all are Richness R=4)

Typical kT \approx 0.5-1.6 keV

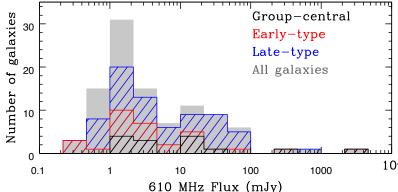

 \rightarrow M₅₀₀ $\approx 8 \times 10^{12} - 6 \times 10^{13} \text{ M}_{\odot}$

Dynamically-active groups:

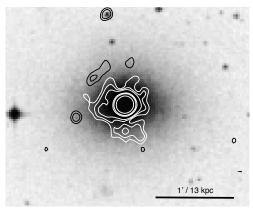
- 2/14 are group-group mergers
- 2/14 "sloshing"

Fraction of Cool Cores = 64%

- 9/14 have declining central kT
- Compare to ~50% in clusters.

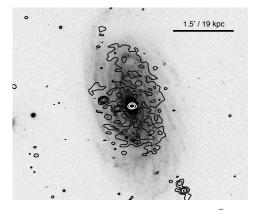

CLoGS high-richness:Radio overview

Group-central galaxies: (Kolokythas et al., in prep.)


- 24/26 (92%) detected at 610, 235 or 1400 MHz
- 6 host jet sources
 - 5 in X-ray bright groups
 - 1 X-ray faint (cold-gas-rich merger)
- 4 are diffuse, 15 point-like

Non-central galaxies:

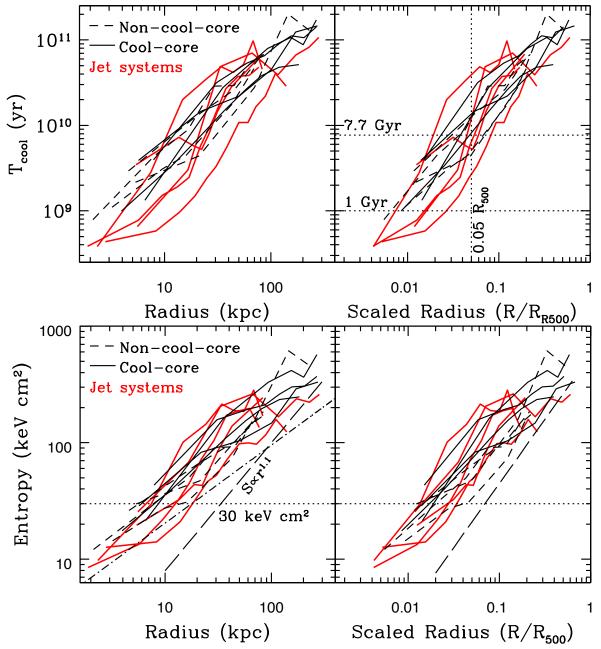
- 44% of group member galaxies detected at 610 or 235 MHz
- 69% of late-type
- 27% of non-central early-type
- 27% of irregular / unclassified



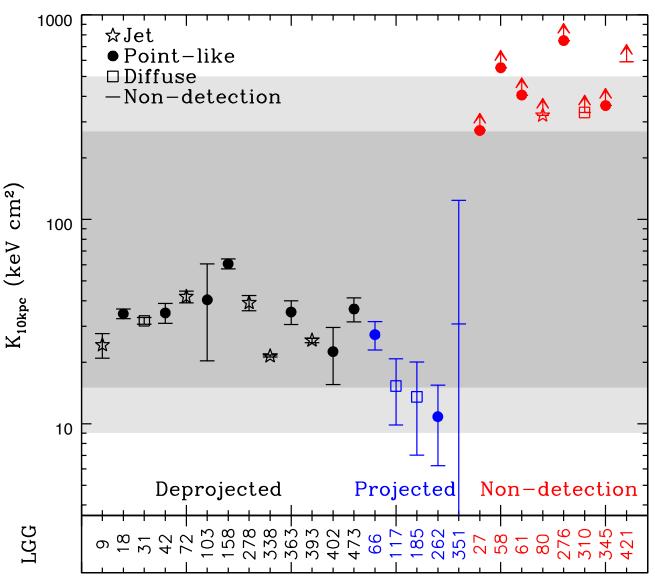
610MHz flux distribution in 18 groups

← ESO507-25: Diffuse source 610 MHz contours at (0.4,0.8,1.6,... mJy/b)

NGC 5985 →
AGN+SF disk
610 MHz
contours at
(0.8,1.6,3.2,...
mJy/b)



Entropy and cooling time


Group-scale halos:

- All have short core
 T_{cool} < 7.7Gyr
 and low core
 entropy < 50 keVcm²
- Most have K<30 keVcm²
- Entropy profiles flatter than r^{1.1} in core, comparable to Panagoulia et al. (2014) profile.
- Central jet sources only seen in cool cores systems with central temperature decline.

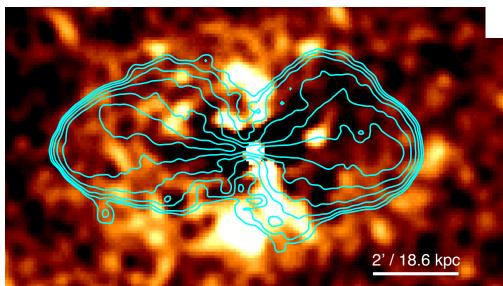
High entropy groups

Lower limits for 1.0 keV halo

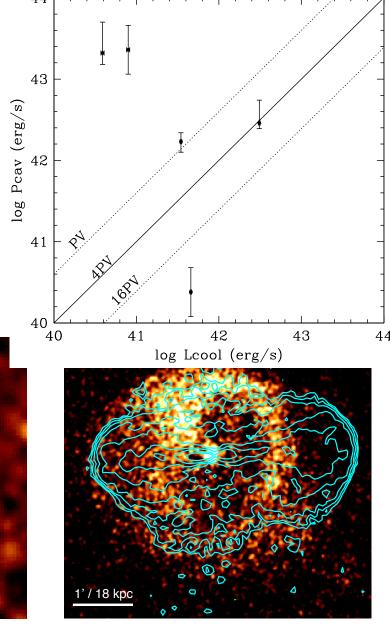
Lower limits for 0.5 keV halo

Predicted range of entropy for from OWLS simulations (dark grey = 1σ , pale grey = 2σ)

AGN feedback


5 X-ray bright, cool core groups with central jet sources

Jet sizes: 5-40 kpc


12/12/16

Jet powers: 2x10⁴⁰-2x10⁴³ erg/s

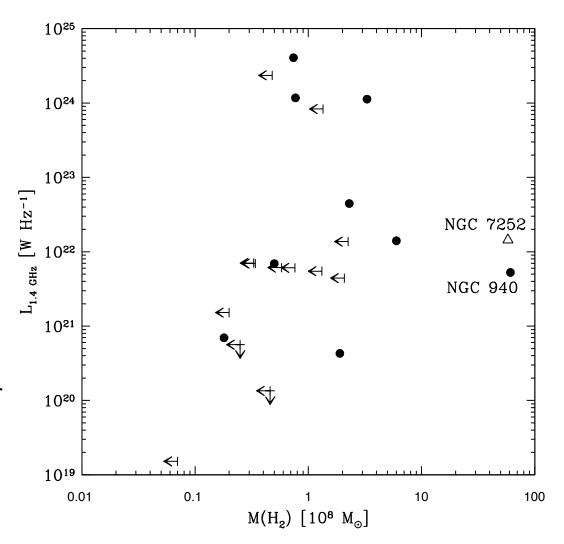
Pcav = 0.1-100 x Lcool
 (c.f. models showing variation in jet power, e.g., Li, Ruszkowski & Bryan 2016)

NGC 4261 (O'Sullivan et al '11, Kolokythas et al '15)

UGC 408 (Bogdan et al 2014)

Molecular gas

23/53 CLoGS dominant galaxies observed in CO


Detection rate 43±14%

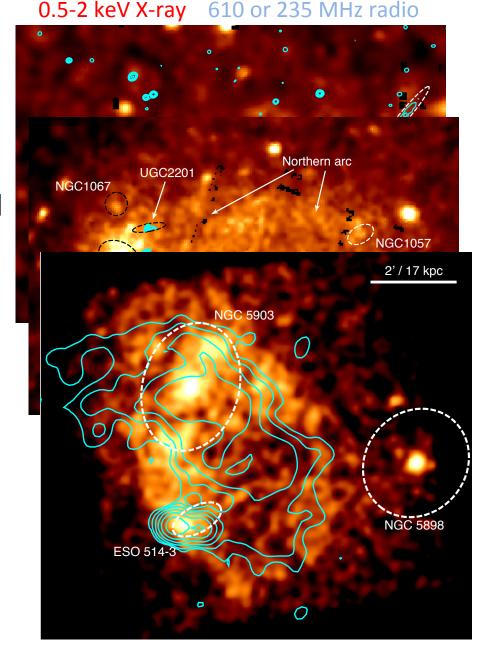
 Compare with 22±3% in Atlas3D ellipticals (Young et al 2013)

CO not limited to systems with X-ray bright IGM

Most have low SFR $<1M_{\odot}/yr$ short depletion time $<10^8$ yr

Data suggest CO is more common in galaxies with radio-loud AGN, but more data needed.

O'Sullivan, Combes, Hamer et al. 2014



What kinds of groups were missed by RASS?

CLoGS X-ray bright groups missed or mis-identified in RASS:

- Faint, non-cool core
- Mergers
- AGN disrupted

3/14 in high-richness subsample
→~20% of X-ray bright groups in local volume as yet unidentified?

Summary

CLoGS is a statistically complete, optically-selected sample of 53 nearby groups with 100% radio and >70% X-ray coverage.

- High-Richness sample of 26 contains 14 X-ray bright groups +4 galaxy-scale X-ray halos.
- ~30% of X-ray bright groups show recent interactions, ~35% have currently or recently active central radio jets.
- No sign of high-entropy groups, most have ≤50 kev cm² at 10kpc.
- In X-ray bright systems, active jets found in cool cores. In some cases Jet power greatly exceeds cooling luminosity.
- CO detection rate in group-dominant galaxies roughly double that in general population of ellipticals.
- 3/14 X-ray bright groups previously unknown → ~20% of X-ray bright groups in local volume may be as yet unidentified.

