First results from CLoGS: A Complete Local-Volume Group Sample Ewan O'Sullivan (SAO)

CLoGS collaboration

SAO: E. O'Sullivan, J. Vrtilek, L. David, C. Jones, W. Forman

U. of Birmingham, UK: T. Ponman, K. Kolokythas, M. Gillone

Presidency U. & U. of Birmingham: S. Raychaudhury

NCRA-TIFR: N. Kantharia

U. Maryland: S. Giacintucci

U. de Chile: C. Haines

U. Alabama: N. Jetha

INAF-O.A. Bologna: M. Gitti

Johns-Hopkins: S. Murray

U. of Victoria: A. Babul

All credit for radio analysis to:

Konstantinos Kolokythas

Simona Giacintucci

Why galaxy groups? And why AGN feedback in groups?

- Most galaxies reside in groups! ~2% in clusters, >50% in groups.
- Galaxy / gas evolution. Groups favour galaxy interactions. Small groups rich in cold gas (HI), Massive groups rich in hot gas (10⁷K) How does this happen?
- Hot gaseous IGM requires feedback to balance cooling.

Problem: available samples of nearby groups are unreliable or biased.

Selecting a representative sample: CLoGS

From the LGG sample of groups within 80 Mpc (Garcia 1993), we select systems with:

- ≥4 member galaxies exclude small associations with no group DM.
- ≥1 early-type member with $L_B \ge 3x10^{10} L_{\odot}$ spiral-only groups almost never have an IGM detectable in X-rays.
- Declination >-30° visible from GMRT and VLA.

Refine/expand membership, determine velocity dispersion σ . Define Richness (R) = number of galaxies with $L_B \ge 1.6 \times 10^{10} L_{\odot}$ Exclude: groups with R ≥ 10 – known clusters groups with R=1 – too poor to estimate σ , f_{spiral} , etc.

CLoGS main sample: 53 groups within 80 Mpc with R=2-9. High-richness subsample: 26 groups with R=4-9. Observe sample in the X-ray to confirm gravitationally bound.

CLoGS: data

- Radio: Full sample complete at 235 and 610 MHz
 - 192 hrs GMRT dual-freq. + archival data (Giacintucci et al. 2011)
 - 4hrs/target, rms ~0.1mJy/b @610 MHz, ~0.6mJy/b @ 235 MHz.
 - GMRT Field of view well suited to groups, diameters >1°.
 - Data for high-richness sample (almost) full reduced.
- X-ray: High-richness sample complete.
 - 279ks XMM-Newton + 50ks Chandra + archival data.
 - Limiting sensitivity: $L_X \ge 1.2 \times 10^{42}$ erg/s in R<R₅₀₀ or $L_X \ge 3.9 \times 10^{41}$ erg/s in R<65 kpc
- Acquisition of data in optical, $H\alpha$, H_1 , CO has begun
 - ~50% groups covered by SDSS, new Hα imaging for ~50% so far.

CLoGS: Goals

- Physical properties of the nearby group population:
 - What fraction of optically selected groups contain a hot IGM?
 - What is their range of mass, temperature, metal abundance, etc?
 - What fraction have cool cores? Roughly 50% of clusters are CC, but non-statistical samples of groups have up to 85% CCs (e.g. Dong et al 2010, based on Chandra archive).
- Central AGN as a group-scale feedback mechanism:
 - Do group-central AGN balance cooling? What is duty cycle, power?
 - How are central AGN affected by environment? Cool cores, entropy?
- Impact of group environment on member galaxies:
 - Is star formation rate affected by group environment?
 - What fraction of member galaxies host AGN? Radio, X-ray, optical?

CLoGS: X-ray overview

- Fraction of X-ray bright groups (extent >65 kpc) = 14/26 (~55%)
 - 7/26 have galaxy-scale emission, 5/26 only point sources
- 2/14 are group-group mergers, 2/14 "sloshing"
- dynamically active
- Typical kT ≈ 0.5-1.6 keV
- \rightarrow M₅₀₀ \approx 8x10¹² 6x10¹³ M_{\odot}
- Fraction of Cool Cores = 65%
 - 9/14 have declining central kT
 - Compare to ~50% in clusters.

CLoGS: Radio overview

Group-central galaxies:

- 25/26 detected at 610 or 235 MHz
- 7 host jet sources
- 3 are diffuse, 15 unresolved

Non-central galaxies:

For 18 groups processed to date

- 75/170 galaxies detected (44%)
- 43/62 late-type (69%)
- 12/45 non-central early-type (27%)
- 17/63 dwarfs/irregulars (27%)

610MHz flux distribution in 18 groups

► ESO507-25: Diffuse source 610 MHz contours at (0.4,0.8,1.6,... mJy/b)

NGC 5350 →
AGN+SF disk
235 MHz
contours at
(0.9,1.8,3.6,...
mJy/b)

NCRA, Pune, 10 December 2013

NGC 5044 (David et al. '09,'11 NGC 5846 (Machacek et al. '12)

Central AGN Jets

- 6/14 X-ray confirmed groups host jet source
- Variety of Radio, Xray morphologies
- Age: 1-100 Myr
- Enthalpy: 10⁵⁵⁻⁵⁹erg

30" / 3.55 kpc

NGC 193 / 4C+03.01

GMRT contours on 0.5-2 keV X-ray

CLoGS: T_{cool} and Entropy vs AGN status

- Jet sources found only in CC as defined by declining central kT profile.
- CCs with jets fall below 30 keV cm⁻² limit (Cavagnolo et al '08) but so do some NCCs.
- Cooling time at fixed scale radius also poor predictor of jet activity.

NGC 5903 – An HI-rich group with diffuse radio emission (See Gopal-

(See Gopal-Krishna et al. 2012, Poster by Mhaskey et al.)

- 3x10⁹ M_☉ of HI in 100 kpc filament extending across NGC 5903 (Appleton et al. 1990)
- TGSS confirms ~7 Jy diffuse structure around NGC 5903, α =1.5±0.08

NGC 5903: collision shock?

- ~40 ks XMM, low-level flaring throughout
- Disturbed 0.7 keV IGM correlated with HI!
- Hot gas mass \approx HI deficit (3x10¹⁰ M_☉)

Similar to collision shock in Stephan's Quintet?

- No clear high-velocity intruder galaxy...
- In SQ radio correlated with HI and X-ray. Here we only see a hint of this in NW ridge - age?

Plans:

New HI observations to get high-res. velocity maps.

Hα imaging proposed to trace moderate temperature gas.

XMM 0.3-2 keV

235 MHz contours

Summary

CLoGS: An optically-selected, statistically complete sample of 53 groups within 80 Mpc, observed in radio and X-ray.

- Full sample completely observed at 610 and 235 MHz.
- High-richness sample of 26-groups complete in X-ray.
- 14/26 groups confirmed as gravitationally bound with X-ray bright IGM, typical kT = 0.5-1.6 keV.
- 6/14 have central jet sources, enthalpies = 10^{55} - 10^{59} erg, source ages ~1-100 Myr.
- Cool-core fraction ~65%, only CC groups host jet sources.
- Sample contains interesting individual sources. NGC 5903 may be a second Stephan's Quintet-like collision shock.