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1. THE COSMOLOGICAL PARAMETERS

Written August 2003 by O. Lahav (University of Cambridge) and
A.R. Liddle (University of Sussex).

1.1. Parametrizing the Universe

Rapid advances in observational cosmology are leading to the
establishment of the first precision cosmological model, with many of
the key cosmological parameters determined to one or two significant
figure accuracy. Particularly prominent are measurements of cosmic
microwave anisotropies, led by the first results from the Wilkinson
Microwave Anisotropy Probe (WMAP) announced in February
2003 [1]. However the most accurate model of the Universe requires
consideration of a wide range of different types of observation, with
complementary probes providing consistency checks, lifting parameter
degeneracies, and enabling the strongest constraints to be placed.

The term ‘cosmological parameters’ is forever increasing in its
scope, and nowadays includes the parametrization of some functions,
as well as simple numbers describing properties of the Universe.
The original usage referred to the parameters describing the global
dynamics of the Universe, such as its expansion rate and curvature.
Also now of great interest is how the matter budget of the Universe
is built up from its constituents: baryons, photons, neutrinos, dark
matter, and dark energy. We are interested in describing the nature of
perturbations in the Universe, through global statistical descriptions
such as the matter and radiation power spectra. There may also
be parameters describing the physical state of the Universe, most
prominent being the ionization fraction as a function of time during
the era since decoupling. Typical comparisons of cosmological models
with observational data now feature about ten parameters.

1.1.1. The global description of the Universe:

Ordinarily, the Universe is taken to be a perturbed Robertson-
Walker space-time with dynamics governed by Einstein’s equations.
This is described in detail by Olive and Peacock in this volume. Using
the density parameters Ωi for the various matter species and ΩΛ for
the cosmological constant, the Friedmann equation can be written

∑

i

Ωi + ΩΛ =
k

R2H2
, (1.1)

where the sum is over all the different species of matter in the
Universe. This equation applies at any epoch, but later in this article
we will use the symbols Ωi and ΩΛ to refer to the present values.
A typical collection would be baryons, photons, neutrinos, and dark
matter (given charge neutrality, the electron density is guaranteed to
be too small to be worth considering separately).

The complete present state of the homogeneous Universe can be
described by giving the present values of all the density parameters
and the present Hubble parameter H0 = 100h kms−1 Mpc−1, and
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2 1. The Cosmological Parameters

indeed one of the density parameters can be eliminated using Eq. (1.1).
These also allow us to track the history of the Universe back in time,
at least until an epoch where interactions allow interchanges between
the densities of the different species, which is believed to have last
happened at neutrino decoupling shortly before nucleosynthesis. To
probe further back into the Universe’s history requires assumptions
about particle interactions, and perhaps about the nature of physical
laws themselves.

1.1.2. Neutrinos:

The standard neutrino sector has three flavors. For neutrinos of
mass in the range 5 × 10−4 eV to 1 MeV, the density parameter in
neutrinos is predicted to be

Ωνh2 =

∑

mν

94 eV
, (1.2)

where the sum is over all families with mass in that range (higher
masses need a more sophisticated calculation). We use units with
c = 1 throughout. Recent results on atmospheric and solar neutrino
oscillations [2] imply non-zero mass-squared differences between the
three neutrino flavors. These oscillation experiments cannot tell us
the absolute neutrino masses, but within the simple assumption of a
mass hierarchy suggest a lower limit of Ων ≈ 0.001 on the neutrino
mass density parameter.

For a total mass as small as 0.1 eV, this could have a potentially
observable effect on the formation of structure, as neutrino free-
streaming damps the growth of perturbations. Present cosmological
observations have shown no convincing evidence of any effects from
either neutrino masses or an otherwise non-standard neutrino sector,
and impose quite stringent limits, which we summarize in Section 1.3.4.
Consequently, the standard assumption at present is that the masses
are too small to have a significant cosmological impact, but this may
change in the near future.

The cosmological effect of neutrinos can also be modified if the
neutrinos have decay channels, or if there is a large asymmetry in the
lepton sector manifested as a different number density of neutrinos
versus anti-neutrinos. This latter effect would need to be of order
unity to be significant, rather than the 10−9 seen in the baryon sector,
which may be in conflict with nucleosynthesis [3].

1.1.3. Inflation and perturbations:

A complete description of the Universe should include a description
of deviations from homogeneity, at least in a statistical way. Indeed,
some of the most powerful probes of the parameters described above
come from studying the evolution of perturbations, so their study is
naturally intertwined in the determination of cosmological parameters.

There are many different notations used to describe the perturba-
tions, both in terms of the quantity used to describe the perturbations
and the definition of the statistical measure. We use the dimensionless
power spectrum ∆2 as defined in Olive and Peacock (also denoted
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1. The Cosmological Parameters 3

P in some of the literature). If the perturbations obey Gaussian
statistics, the power spectrum provides a complete description of their
properties.

From a theoretical perspective, a useful quantity to describe the
perturbations is the curvature perturbation R, which measures the
spatial curvature of a comoving slicing of the space-time. A case
of particular interest is the Harrison-Zel’dovich spectrum, which
corresponds to a constant spectrum ∆2

R. More generally, one can
approximate the spectrum by a power-law, writing

∆2
R (k) = ∆2

R (k∗)

[

k

k∗

]n−1

, (1.3)

where n is known as the spectral index, always defined so that
n = 1 for the Harrison-Zel’dovich spectrum, and k∗ is an arbitrarily
chosen scale. The initial spectrum, defined at some early epoch of
the Universe’s history, is usually taken to have a simple form such as
this power-law, and we will see that observations require n close to
one, which corresponds to the perturbations in the curvature being
independent of scale. Subsequent evolution will modify the spectrum
from its initial form.

The simplest viable mechanism for generating the observed
perturbations is the inflationary cosmology, which posits a period of
accelerated expansion in the Universe’s early stages [4]. It is a useful
working hypothesis that this is the sole mechanism for generating
perturbations. Commonly, it is further assumed to be the simplest
class of inflationary model, where the dynamics are equivalent to that
of a single scalar field φ slowly rolling on a potential V (φ). One aim of
cosmology is to verify that this simple picture can match observations,
and to determine the properties of V (φ) from the observational data.

Inflation generates perturbations through the amplification of
quantum fluctuations, which are stretched to astrophysical scales
by the rapid expansion. The simplest models generate two types,
density perturbations which come from fluctuations in the scalar field
and its corresponding scalar metric perturbation, and gravitational
waves which are tensor metric fluctuations. The former experience
gravitational instability and lead to structure formation, while the
latter can influence the cosmic microwave background anisotropies.
Defining slow-roll parameters, with primes indicating derivatives with
respect to the scalar field, as

ǫ =
m2

Pl

16π

(

V ′

V

)2

; η =
m2

Pl

8π

V ′′

V
, (1.4)

which should satisfy ǫ, |η| ≪ 1, the spectra can be computed using the
slow-roll approximation as

∆2
R (k) ≃

8

3m4
Pl

V

ǫ

∣

∣

∣

∣

∣

k=aH

;

∆2
grav (k) ≃

128

3m4
Pl

V

∣

∣

∣

∣

∣

k=aH

. (1.5)
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4 1. The Cosmological Parameters

In each case, the expressions on the right-hand side are to be evaluated
when the scale k is equal to the Hubble radius during inflation. The
symbol ‘≃’ indicates use of the slow-roll approximation, which is
expected to be accurate to a few percent or better.

From these expressions, we can compute the spectral indices

n ≃ 1 − 6ǫ + 2η ; ngrav ≃ −2ǫ . (1.6)

Another useful quantity is the ratio of the two spectra, defined by

r ≡
∆2

grav (k∗)

∆2
R (k∗)

. (1.7)

The literature contains a number of definitions of r; this convention
matches that of recent versions of cmbfast [5] and of WMAP [6],
while definitions based on the relative effect on the microwave
background anisotropies typically differ by tens of percent. We have

r ≃ 16ǫ ≃ −8ngrav , (1.8)

which is known as the consistency equation.

In general one could consider corrections to the power-law
approximation, and indeed WMAP found some low-significance
evidence that this might be needed, which we discuss later. However
for now we make the working assumption that the spectra can be
approximated by power laws. The consistency equation shows that
r and ngrav are not independent parameters, and so the simplest
inflation models give initial conditions described by three parameters,
usually taken as ∆2

R, n, and r, all to be evaluated at some scale
k∗, usually the ‘statistical centre’ of the range explored by the data.
Alternatively, one could use the parametrization V , ǫ, and η, all
evaluated at a point on the putative inflationary potential.

After the perturbations are created in the early Universe, they
undergo a complex evolution up until the time they are observed in
the present Universe. While the perturbations are small, this can
be accurately followed using a linear theory numerical code such as
cmbfast [5]. This works right up to the present for the cosmic
microwave background, but for density perturbations on small scales
non-linear evolution is important and can be addressed by a variety
of semi-analytical and numerical techniques. However the analysis is
made, the outcome of the evolution is in principle determined by
the cosmological model, and by the parameters describing the initial
perturbations, and hence can be used to determine them.

Of particular interest are cosmic microwave background aniso-
tropies. Both the total intensity and two independent polarization
modes are predicted to have anisotropies. These can be described
by the radiation angular power spectra Cℓ as defined in the article
of Scott and Smoot in this volume, and again provide a complete
description if the density perturbations are Gaussian.
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1. The Cosmological Parameters 5

1.1.4. The standard cosmological model:

We now have most of the ingredients in place to describe the
cosmological model. Beyond those of the previous subsections, there
is only one parameter which is essential, which is a measure of
the ionization state of the Universe. The Universe is known to be
highly ionized at low redshifts (otherwise radiation from distant
quasars would be heavily absorbed in the ultra-violet), and the
ionized electrons can scatter microwave photons altering the pattern
of observed anisotropies. The most convenient parameter to describe
this is the optical depth to scattering τ (i.e. the probability that a
given photon scatters once); in the approximation of instantaneous
and complete re-ionization, this could equivalently be described by the
redshift of re-ionization zion.

The basic set of cosmological parameters is therefore as shown in
Table 1.1. The spatial curvature does not appear in the list, because
it can be determined from the other parameters using Eq. (1.1). The
total present matter density Ωm = Ωdm + Ωb is usually used in place
of the dark matter density.

Table 1.1: The basic set of cosmological parameters. We give
values as obtained using particular fit to a dataset known as
WMAPext+2dF, described later. We cannot stress too much
that the exact values and uncertainties depend on both the
precise datasets used and the choice of parameters allowed to
vary, and the effects of varying some assumptions will be shown
later in Table 1.2. Limits on the cosmological constant depend
on whether the Universe is assumed flat, while there is no
established convention for specifying the density perturbation
amplitude. Uncertainties are one-sigma/68% confidence unless
otherwise stated.

Parameter Symbol Value

Hubble parameter h 0.73 ± 0.03

Total matter density Ωm Ωmh2 = 0.134± 0.006

Baryon density Ωb Ωbh2 = 0.023± 0.001

Cosmological constant ΩΛ See Ref. 7

Radiation density Ωr Ωrh
2 = 2.47 × 10−5

Neutrino density Ων See Sec. 1.1.2

Density perturbation amplitude ∆2
R(k∗) See Ref. 7

Density perturbation spectral index n n = 0.97 ± 0.03

Tensor to scalar ratio r r < 0.53 (95% conf)

Ionization optical depth τ τ = 0.15 ± 0.07

As described in Sec. 1.4, models based on these ten parameters are
able to give a good fit to the complete set of high-quality data available
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6 1. The Cosmological Parameters

at present, and indeed some simplification is possible. Observations
are consistent with spatial flatness, and indeed the inflation models
so far described automatically generate spatial flatness, so we can set
k = 0; the density parameters then must sum to one, and so one
can be eliminated. The neutrino energy density is often not taken
as an independent parameter. Provided the neutrino sector has the
standard interactions the neutrino energy density while relativistic can
be related to the photon density using thermal physics arguments, and
it is currently difficult to see the effect of the neutrino mass although
observations of large-scale structure have already placed interesting
upper limits. This reduces the standard parameter set to eight. In
addition, there is no observational evidence for the existence of tensor
perturbations (though the upper limits are quite weak), and so r could
be set to zero.∗ This leaves seven parameters, which is the smallest
set that can usefully be compared to the present cosmological data
set. This model is referred to by various names, including ΛCDM, the
concordance cosmology, and the standard cosmological model.

Of these parameters, only Ωr is accurately measured directly. The
radiation density is dominated by the energy in the cosmic microwave
background, and the COBE FIRAS experiment has determined its
temperature to be T = 2.725 ± 0.001 Kelvin [8], corresponding to
Ωr = 2.47 × 10−5h−2.

In addition to this minimal set, there is a range of other parameters
which might prove important in future as the dataset further improves,
but for which there is so far no direct evidence, allowing them to
be set to a specific value. We discuss various speculative options in
the next section. For completeness at this point, we mention one
other interesting parameter, the helium fraction, which is a non-zero
parameter that can affect the microwave anisotropies at a subtle level.
Presently, big-bang nucleosynthesis provides the best measurement of
this parameter, and it is usually fixed in microwave anisotropy studies,
but the data are just reaching a level where allowing its variation may
become mandatory.

1.1.5. Derived parameters:

The parameter list of the previous subsection is sufficient to give
a complete description of cosmological models which agree with
observational data. However, it is not a unique parametrization,
and one could instead use parameters derived from that basic set.
Parameters which can be derived from the set given above include
the age of the Universe, the present horizon distance, the present
microwave background and neutrino background temperatures, the
epoch of matter-radiation equality, the epochs of recombination and
decoupling, the epoch of transition to an accelerating Universe, the
baryon-to-photon ratio, and the baryon to dark matter density ratio.
The physical densities of the matter components, Ωih

2, are often

∗ More controversially, one could argue that as no evidence against
the Harrison-Zel’dovich spectrum has yet been seen, then n could be
set to one. We will however allow it to vary.
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1. The Cosmological Parameters 7

more useful than the density parameters. The density perturbation
amplitude can be specified in many different ways other than the
large-scale primordial amplitude, for instance, in terms of its effect
on the cosmic microwave background, or by specifying a short-scale
quantity, a common choice being the present linear-theory mass
dispersion on a scale of 8 h−1Mpc, known as σ8.

Different types of observation are sensitive to different subsets of
the full cosmological parameter set, and some are more naturally
interpreted in terms of some of the derived parameters of this
subsection than on the original base parameter set. In particular,
most types of observation feature degeneracies whereby they are
unable to separate the effects of simultaneously varying several of
the base parameters, an example being the angular diameter/physical
density degeneracy of cosmic microwave anisotropies.

1.2. Extensions to the standard model

This section discusses some ways in which the standard model could
be extended. At present, there is no positive evidence in favor of any
of these possibilities, which are becoming increasingly constrained by
the data, though there always remains the possibility of trace effects
at a level below present observational capability.

1.2.1. More general perturbations:

The standard cosmology assumes adiabatic, Gaussian perturbations.
Adiabaticity means that all types of material in the Universe share a
common perturbation, so that if the space-time is foliated by constant-
density hypersurfaces, then all fluids and fields are homogeneous
on those slices, with the perturbations completely described by the
variation of the spatial curvature of the slices. Gaussianity means
that the initial perturbations obey Gaussian statistics, with the
amplitudes of waves of different wavenumbers being randomly drawn
from a Gaussian distribution of width given by the power spectrum.
Note that gravitational instability generates non-Gaussianity; in this
context, Gaussianity refers to a property of the initial perturbations
before they evolve significantly.

The simplest inflation models based on one dynamical field predict
adiabatic fluctuations and a level of non-Gaussianity which is too
small to be detected by any experiment so far conceived. For present
data, the primordial spectra are usually assumed to be power laws.

1.2.1.1. Non-power-law spectra:

For typical inflation models, it is an approximation to take the
spectra as power laws, albeit usually a good one. As data quality
improves, one might expect this approximation to come under
pressure, requiring a more accurate description of the initial spectra,
particularly for the density perturbations. In general, one can write a
Taylor expansion of ln∆2

R as

ln∆2
R (k) = ln∆2

R (k∗)+(n∗ − 1) ln
k

k∗
+

1

2

dn

d ln k

∣

∣

∣

∣

∗

ln2 k

k∗
+· · · , (1.9)
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8 1. The Cosmological Parameters

where the coefficients are all evaluated at some scale k∗. The term
dn/d ln k|∗ is often called the running of the spectral index [9], and
has recently become topical due to a possible low-significance detection
by WMAP. Once non-power-law spectra are allowed, it is necessary to
specify the scale k∗ at which quantities such as the spectral index are
defined.

1.2.1.2. Isocurvature perturbations:

An isocurvature perturbation is one which leaves the total density
unperturbed, while perturbing the relative amounts of different
materials. If the Universe contains N fluids, there is one growing
adiabatic mode and N − 1 growing isocurvature modes. These can
be excited, for example, in inflationary models where there are two
or more fields which acquire dynamically important perturbations. If
one field decays to form normal matter, while the second survives
to become the dark matter, this will generate a cold dark matter
isocurvature perturbation.

In general there are also correlations between the different modes,
and so the full set of perturbations is described by a matrix giving the
spectra and their correlations. Constraining such a general construct
is challenging, though constraints on individual modes are beginning
to become meaningful, with no evidence that any other than the
adiabatic mode must be non-zero.

1.2.1.3. Non-Gaussianity:

Multi-field inflation models can also generate primordial non-
Gaussianity. The extra fields can either be in the same sector of
the underlying theory as the inflaton, or completely separate, an
interesting example of the latter being the curvaton model [10].
Current upper limits on non-Gaussianity are becoming stringent, but
there remains much scope to push down those limits and perhaps
reveal trace non-Gaussianity in the data. If non-Gaussianity is
observed, its nature may favor an inflationary origin, or a different one
such as topological defects. A plausible possibility is non-Gaussianity
caused by defects forming in a phase transition which ended inflation.

1.2.2. Dark matter properties:

Dark matter properties are discussed in the article by Drees and
Gerbier in this volume. The simplest assumption concerning the
dark matter is that it has no significant interactions with other
matter, and that its particles have a negligible velocity. Such dark
matter is described as ‘cold,’ and candidates include the lightest
supersymmetric particle, the axion, and primordial black holes. As
far as astrophysicists are concerned, a complete specification of the
relevant cold dark matter properties is given by the density parameter
Ωcdm, though those seeking to directly detect it are as interested in its
interaction properties.

Cold dark matter is the standard assumption and gives an excellent
fit to observations, except possibly on the shortest scales where there
remains some controversy concerning the structure of dwarf galaxies
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1. The Cosmological Parameters 9

and possible substructure in galaxy halos. For all the dark matter to
have a large velocity dispersion, so-called hot dark matter, has long
been excluded as it does not permit galaxies to form; for thermal relics
the mass must be above about 1 keV to satisfy this constraint, though
relics produced non-thermally, such as the axion, need not obey this
limit. However, there remains the possibility that further parameters
might need to be introduced to describe dark matter properties
relevant to astrophysical observations. Suggestions which have been
made include a modest velocity dispersion (warm dark matter) and
dark matter self-interactions. There remains the possibility that the
dark matter comprises two separate components, e.g., a cold one and
a hot one, an example being if massive neutrinos have a non-negligible
effect.

1.2.3. Dark energy:

While the standard cosmological model given above features a
cosmological constant, in order to explain observations indicating that
the Universe is presently accelerating, further possibilities exist under
the general heading dark energy.† A particularly attractive possibility
(usually called quintessence, though that word is used with various
different meanings in the literature) is that a scalar field is responsible,
with the mechanism mimicking that of early Universe inflation [11].
As described by Olive and Peacock, a fairly model-independent
description of dark energy can be given just using the equation of state
parameter w, with w = −1 corresponding to a cosmological constant.
In general, the function w could itself vary with redshift, though
practical experiments devised so far would be sensitive primarily to
some average value weighted over recent epochs. For high-precision
predictions of microwave background anisotropies, it is better to use
a scalar-field description in order to have a self-consistent evolution of
the ‘sound speed’ associated with the dark energy perturbations.

Present observations are consistent with a cosmological constant,
but it is quite common to see w kept as a free parameter to be
added to the set described in the previous section. Most, but not all,
researchers assume the weak energy condition w ≥ −1. In the future
it may be necessary to use a more sophisticated parametrization of
the dark energy.

1.2.4. Complex ionization history:

The full ionization history of the Universe is given by specifying the
ionization fraction as a function of redshift z. The simplest scenario
takes the ionization to be zero from recombination up to some redshift
zion, at which point the Universe instantaneously re-ionizes completely.
In that case, there is a one-to-one correspondence between τ and
zion (that relation, however, also depending on other cosmological
parameters).

† Unfortunately this is rather a misnomer, as it is the negative pres-
sure of this material, rather than its energy, that is responsible for
giving the acceleration.
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10 1. The Cosmological Parameters

While simple models of the re-ionization process suggest that
rapid ionization is a good approximation, observational evidence is
mixed, as it is difficult to reconcile the high optical depth inferred
from the microwave background with absorption seen in some high-
redshift quasar systems, and also perhaps with the temperature of the
intergalactic medium at z ≃ 3. Accordingly, a more complex ionization
history may need to be considered, and perhaps separate histories
for hydrogen and helium, which will necessitate new parameters.
Additionally, high-precision microwave anisotropy experiments may
require consideration of the level of residual ionization left after
recombination, which in principle is computable from the other
cosmological parameters.

1.2.5. Varying ‘constants’:

Variation of the fundamental constants of nature over cosmological
times is another possible enhancement of the standard cosmology.
There is a long history of study of variation of the gravitational
constant G, and more recently attention has been drawn to the
possibility of small fractional variations in the fine-structure constant.
There is presently no observational evidence for the former, which
is tightly constrained by a variety of measurements. Evidence for
the latter has been claimed from studies of spectral line shifts in
quasar spectra at redshifts of order two [12], but this is presently
controversial and in need of further observational study.

1.2.6. Cosmic topology:

The usual hypothesis is that the Universe has the simplest topology
consistent with its geometry, for example that a flat Universe extends
forever. Observations cannot tell us whether that is true, but they
can test the possibility of a non-trivial topology on scales up to
roughly the present Hubble scale. Extra parameters would be needed
to specify both the type and scale of the topology, for example, a
cuboidal topology would need specification of the three principal axis
lengths. At present, there is no direct evidence for cosmic topology,
though the low values of the observed cosmic microwave quadrupole
and octupole have been cited as a possible signature.

1.3. Probes

The goal of the observational cosmologist is to utilize astronomical
objects to derive cosmological parameters. The transformation
from the observables to the key parameters usually involves many
assumptions about the nature of the objects, as well as about the
nature of the dark matter. Below we outline the physical processes
involved in each probe, and the main recent results. The first two
subsections concern probes of the homogeneous Universe, while the
remainder consider constraints from perturbations.
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1. The Cosmological Parameters 11

1.3.1. Direct measures of the Hubble constant:

In 1929 Edwin Hubble discovered the law of expansion of the
Universe by measuring distances to nearby galaxies. The slope of
the relation between the distance and recession velocity is defined to
be the Hubble constant H0. Astronomers argued for decades on the
systematic uncertainties in various methods and derived values over
the wide range, 40 kms−1 Mpc−1 <

∼ H0
<
∼ 100 kms−1 Mpc−1.

One of the most reliable results on the Hubble constant comes
from the Hubble Space Telescope Key Project [13]. The group
has used the empirical period-luminosity relations for Cepheid
variable stars to obtain distances to 31 galaxies, and calibrated
a number of secondary distance indicators (Type Ia Supernovae,
Tully-Fisher, surface brightness fluctuations and Type II Supernovae)
measured over distances of 400 to 600 Mpc. They estimated
H0 = 72 ± 3 (statistical) ± 7 (systematic) km s−1 Mpc−1.‡ The major
sources of uncertainty in this result are due to the metallicity of the
Cepheids and the distance to the fiducial nearby galaxy (called the
Large Magellanic Cloud) to which all Cepheid distances are measured
relative to. Nevertheless, it is remarkable that this result is in such
good agreement with the result derived from the WMAP CMB and
large-scale structure measurements (see Table 1.2).

1.3.2. Supernovae as cosmological probes:

The relation between observed flux and the intrinsic luminosity
of an object depends on the luminosity distance dL, which in turn
depends on cosmological parameters. More specifically

dL = (1 + z) re (z) , (1.10)

where re(z) is the coordinate distance. For example, in a flat Universe

re (z) =

∫ z

0
dz′/H

(

z′
)

. (1.11)

For a general dark energy equation of state w(z) = pQ(z)/ρQ(z), the
Hubble parameter is, still considering only the flat case,

H2 (z) /H2
0 = (1 + z)3 Ωm + ΩQ exp [3X (z)] , (1.12)

where

X (z) =

∫ z

0

[

1 + w
(

z′
)] (

1 + z′
)−1

dz′ , (1.13)

and Ωm and ΩQ are the present density parameters of matter and
dark energy components. If a general equation of state is allowed,
then one has to solve for w(z) (parameterized, for example, as
w(z) = w = constant, or w(z) = w0 + w1z) as well as for ΩQ.

‡ Unless stated otherwise, all quoted uncertainties in this article are
one-sigma/68% confidence. It is common for cosmological parameters
to have significantly non-Gaussian error distributions.
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12 1. The Cosmological Parameters

Empirically, the peak luminosity of supernova of Type Ia (SNe
Ia) can be used as an efficient distance indicator (e.g., Ref. 14).
The favorite theoretical explanation for SNe Ia is the thermonuclear
disruption of carbon-oxygen white dwarfs. Although not perfect
‘standard candles’, it has been demonstrated that by correcting for a
relation between the light curve shape and the luminosity at maximum
brightness, the dispersion of the measured luminosities can be greatly
reduced. There are several possible systematic effects which may
affect the accuracy of the SNe Ia as distance indicators, for example,
evolution with redshift and interstellar extinction in the host galaxy
and in the Milky Way, but there is no indication that any of these
effects are significant for the cosmological constraints.

Figure 1.1: This shows the preferred region in the Ωm–ΩΛ plane
from a study of 172 supernovae, and also how the constraints
tighten when the 2dF galaxy redshift survey power spectrum is
added as an additional constraint. [Reproduced with permission
from Tonry et al. [16]. ]

Two major studies, the ‘Supernova Cosmology Project’ and the
‘High-z Supernova Search Team’, found evidence for an accelerating
Universe [15], interpreted as due to a cosmological constant, or to
a more general ‘dark energy’ component. Recent results obtained
by Tonry et al. [16] are shown in Fig. 1.1 (see also Ref. 17). The
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1. The Cosmological Parameters 13

SNe Ia data alone can only constrain a combination of Ωm and
ΩΛ. When combined with the CMB data (which indicates flatness,
i.e., Ωm + ΩΛ ≈ 1), the best-fit values are Ωm ≈ 0.3 and ΩΛ ≈ 0.7.
Future experiments will aim to set constraints on the cosmic equation
of state w(z). However, given the integral relation between the
luminosity distance and w(z), it is not straightforward to recover w(z)
(e.g., Ref. 18).

1.3.3. Cosmic microwave background:

The physics of the cosmic microwave background (CMB) is
described in detail by Scott and Smoot in this volume. Before
recombination, the baryons and photons are tightly coupled, and the
perturbations oscillate in the potential wells generated primarily by
the dark matter perturbations. After decoupling, the baryons are free
to collapse into those potential wells. The CMB carries a record of
conditions at the time of decoupling, often called primary anisotropies.
In addition, it is affected by various processes as it propagates towards
us, including the effect of a time-varying gravitational potential (the
integrated Sachs-Wolfe effect), gravitational lensing, and scattering
from ionized gas at low redshift.

The primary anisotropies, the integrated Sachs-Wolfe effect,
and scattering from a homogeneous distribution of ionized gas,
can all be calculated using linear perturbation theory, a widely-
used implementation being the CMBFAST code of Seljak and
Zaldarriaga [5]. Gravitational lensing is also calculated in this code.
Secondary effects such as inhomogeneities in the re-ionization process,
and scattering from gravitationally-collapsed gas (the Sunyaev-
Zel’dovich effect), require more complicated, and more uncertain,
calculations.

The upshot is that the detailed pattern of anisotropies, quantified,
for instance, by the angular power spectrum Cℓ, depends on all of
the cosmological parameters. In a typical cosmology, the anisotropy
power spectrum [usually plotted as ℓ(ℓ + 1)Cℓ] features a flat plateau
at large angular scales (small ℓ), followed by a series of oscillatory
features at higher angular scales, the first and most prominent being
at around one degree (ℓ ≃ 200). These features, known as acoustic
peaks, represent the oscillations of the photon-baryon fluid around the
time of decoupling. Some features can be closely related to specific
parameters—for instance, the location of the first peak probes the
spatial geometry, while the relative heights of the peaks probes the
baryon density—but many other parameters combine to determine the
overall shape.

The WMAP experiment [1] has provided the most accurate
results to date on the spectrum of CMB fluctuations [19], with a
precision determination of the temperature power spectrum up to
ℓ ≃ 900, shown in Fig. 1.2, and the first detailed measurement of
the correlation spectrum between temperature and polarization [20]
(the correlation having first been detected by DASI [21]) . These are
consistent with models based on the parameters we have described,
and provide quite accurate determinations of many of them [7]. In
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14 1. The Cosmological Parameters

this subsection, we will refer to results from WMAP alone, with the
following section combining those with other observations. We note
that as the parameter fitting is done in a multi-parameter space, one
has to assume a ‘prior’ range for each of the parameters (e.g., Hubble
constant 0.5 < h < 1), and there may be some dependence on these
assumed priors.

Figure 1.2: The angular power spectrum of the cosmic
microwave background as measured by the WMAP satellite.
The solid line shows the prediction from the best-fitting ΛCDM
model [7]. The error bars on the data points (which are tiny for
most of them) indicate the observational errors, while the shaded
region indicates the statistical uncertainty from being able to
observe only one microwave sky, known as cosmic variance, which
is the dominant uncertainty on large angular scales. [Figure
courtesy NASA/WMAP Science Team.]

WMAP provides an exquisite measurement of the location of the
first acoustic peak, which directly probes the spatial geometry and
yields a total density Ωtot ≡

∑

Ωi + ΩΛ of

Ωtot = 1.02 ± 0.02 , (1.14)

consistent with spatial flatness and completely excluding significantly
curved Universes (this result does however assume a fairly strong prior
on the Hubble parameter from other measurements; WMAP alone
constrains it only weakly, and allows significantly closed Universes
if h is small, e.g. Ωtot = 1.3 for h = 0.3). It also gives a precision
measurement of the age of the Universe. It gives a baryon density
consistent with that coming from nucleosynthesis, and affirms the

September 25, 2004 04:09



1. The Cosmological Parameters 15

need for both dark matter and dark energy if the data are to be
explained. For the spectral index of density perturbations, WMAP
alone is consistent with a power-law spectrum, with spectral index
n = 0.99 ± 0.04, and in particular with a scale-invariant initial
spectrum n = 1. It shows no evidence for dynamics of the dark energy,
being consistent with a pure cosmological constant (w = −1).

One of the most interesting results, driven primarily by detection
of large-angle polarization-temperature correlations, is the discovery
of a high optical depth to re-ionization, τ ∼ 0.17, which roughly
corresponds to a re-ionization redshift zion ∼ 17. This was higher than
expected, though it appears it can be accommodated in models for
development of the first structures which provide the ionizing flux.

In addition to WMAP, useful information comes from measurements
of the CMB on small angular scales by, amongst others, the ACBAR
and CBI experiments. Further, in 2002 the DASI experiment made
the first measurement of the polarization anisotropies [21], again
consistent with the standard cosmology, though not with sufficient
accuracy to provide detailed constraints.

1.3.4. Galaxy clustering:

The power spectrum of density perturbations depends on the nature
of the dark matter. Within the Cold Dark Matter model, the shape
of the power spectrum depends primarily on the primordial power
spectrum and on the combination Ωmh which determines the horizon
scale at matter-radiation equality, with a subdominant dependence on
the baryon density. The matter distribution is most easily probed by
observing the galaxy distribution, but this must be done with care
as the galaxies do not perfectly trace the dark matter distribution.
Rather, they are a ‘biased’ tracer of the dark matter. The need to
allow for such bias is emphasized by the observation that different
types of galaxies show bias with respect to each other. Further, the
observed 3D galaxy distribution is in redshift space, i.e., the observed
redshift is the sum of the Hubble expansion and the line-of-sight
peculiar velocity, leading to linear and non-linear dynamical effects
which also depend on the cosmological parameters. On the largest
length scales, the galaxies are expected to trace the location of the
dark matter, except for a constant multiplier b to the power spectrum,
known as the linear bias parameter. On scales smaller than 20 h−1

Mpc or so, the clustering pattern is ‘squashed’ in the radial direction
due to coherent infall, which depends on the parameter β ≡ Ω0.6

m /b
(on these shorter scales, more complicated forms of biasing are not
excluded by the data). On scales of a few h−1 Mpc, there is an effect
of elongation along the line of sight (colloquially known as the ‘finger
of God’ effect) which depends on the galaxy velocity dispersion σp.
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16 1. The Cosmological Parameters

1.3.4.1. The galaxy power spectrum:

The 2-degree Field (2dF) Galaxy Redshift Survey is now complete
and publicly available, with nearly 230,000 redshifts.∗∗ Analyses of
a subset of the full data (containing 160,000 redshifts) measured
the power spectrum for k > 0.02 h Mpc−1 with ∼ 10% accuracy,
shown in Fig. 1.3. The measured power spectrum is well fit by
a CDM model with Ωmh = 0.18 ± 0.02, and a baryon fraction
Ωb/Ωm = 0.17 ± 0.06 [22]. The pattern of the galaxy clustering in
redshift space is fitted by β = 0.49 ± 0.09 and velocity dispersion
σp = 506 ± 52 kms−1 [23]; note that the two are strongly correlated.
Combination of the 2dF data with the CMB indicates b ∼ 1,
in agreement with a 2dF-alone analysis of higher-order clustering
statistics. Results for these parameters also depend on the length
scale over which a fit is done, and the selection of the objects by
luminosity, spectral type, or color. In particular, on scales smaller
than 10 h−1Mpc, different galaxy types are clustered differently.
This ‘biasing’ introduces a systematic effect on the determination of
cosmological parameters from redshift surveys. Prior knowledge from
simulations of galaxy formation could help, but is model-dependent.
We note that the present-epoch power spectrum is not sensitive to
dark energy, so it is mainly a probe of the matter density.

The Sloan Digital Sky Survey (SDSS) is a project to image a
quarter of the sky, and to obtain spectra of galaxies and quasars
selected from the imaging data.†† A maximum likelihood analysis of
early SDSS data by Szalay et al. [24] used the projected distribution
of galaxies in a redshift bin around z = 0.33 to find Ωmh = 0.18±0.04,
assuming a flat ΛCDM model with Ωm = 1 − ΩΛ = 0.3. The power
spectrum of the latest version of SDSS redshift survey was published
as this article was being finalized [25].

1.3.4.2. Limits on neutrino mass from 2dFGRS:

Large-scale structure data can put an upper limit on the ratio
Ων/Ωm due to the neutrino ‘free streaming’ effect [26]. By comparing
the 2dF galaxy power spectrum with a four-component model
(baryons, cold dark matter, a cosmological constant, and massive
neutrinos), it was estimated that Ων/Ωm < 0.13 (95% confidence
limit), giving Ων < 0.04 if a concordance prior of Ωm = 0.3 is imposed.
The latter corresponds to an upper limit of about 2 eV on the
total neutrino mass, assuming a prior of h ≈ 0.7 [27]. The above
analysis assumes that the primordial power spectrum is adiabatic,
scale-invariant and Gaussian. Potential systematic effects include
biasing of the galaxy distribution and non-linearities of the power
spectrum. Additional cosmological data sets bring down this upper
limit by a factor of two [28]. The analysis of WMAP+2dFGRS [7]
derived Ωνh2 < 0.0067 (95% CL).

Laboratory limits on absolute neutrino masses from tritium beta
decay and especially from neutrinoless double-beta decay should,

∗∗ See http://www.mso.anu.edu.au/2dFGRS
†† See http://www.sdss.org
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Figure 1.3: The galaxy power spectrum from the 2dF
galaxy redshift survey as derived in Ref. 22. This plot shows
P (k) ∝ ∆2(k)/k3, but with distances measured in redshift
space and convolved with the survey geometry. The solid line
shows a linear-theory ΛCDM fit (also convolved with the
survey geometry) with Ωmh = 0.2, Ωb/Ωm = 0.15, h = 0.7
and n = 1. Only the range 0.02 h Mpc−1 < k < 0.15 h Mpc−1,
where perturbations are in the linear regime, was used to obtain
that best fit. The error bars are correlated, but with known
covariances. [Figure provided by Will Percival; see also Ref. 22.]

within the next decade, push down towards (or perhaps even beyond)
the 0.1 eV level that has cosmological significance.

1.3.5. Clusters of galaxies:

A cluster of galaxies is a large collection of galaxies held together
by their mutual gravitational attraction. The largest ones are around
1015 solar masses, and are the largest gravitationally-bound structures
in the Universe. Even at the present epoch they are relatively rare,
with only a few percent of galaxies being in clusters. They provide
various ways to study the cosmological parameters; here we discuss
constraints from the measurements of the cluster number density and
the baryon fraction in clusters.
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18 1. The Cosmological Parameters

1.3.5.1. Cluster number density: The first objects of a given kind
form at the rare high peaks of the density distribution, and
if the primordial density perturbations are Gaussian-distributed,
their number density is exponentially sensitive to the size of the
perturbations, and hence can strongly constrain it. Clusters are an
ideal application in the present Universe. They are usually used to
constrain the amplitude σ8, as a box of side 8 h−1 Mpc contains
about the right amount of material to form a cluster. The most useful
observations at present are of X-ray emission from hot gas lying within
the cluster, whose temperature is typically a few keV, and which can
be used to estimate the mass of the cluster. A theoretical prediction
for the mass function of clusters can come either from semi-analytic
arguments or from numerical simulations. At present, the main
uncertainty is the relation between the observed gas temperature and
the cluster mass, despite extensive study using simulations. A recent
analysis [29] gives

σ8 = 0.78+0.30
−0.06 (95%CL) (1.15)

for Ωm = 0.35, with highly non-Gaussian error bars, but different
authors still find a spread of values. Scaling to lower Ωm increases σ8

somewhat, and the result above is consistent with values predicted in
cosmologies compatible with WMAP.

The same approach can be adopted at high redshift (which for
clusters means redshifts approaching one) to attempt to measure σ8

at an earlier epoch. The evolution of σ8 is primarily driven by the
value of the matter density Ωm, with a sub-dominant dependence on
the dark energy density. It is generally recognized that such analyses
favor a low matter density, though there is not complete consensus on
this, and at present this technique for constraining the density is not
competitive with the CMB.

1.3.5.2. Cluster baryon fraction: If clusters are representative of
the mass distribution in the Universe, the fraction of the mass in
baryons to the overall mass distribution would be fb = Ωb/Ωm. If
Ωb, the baryon density parameter, can be inferred from the primordial
nucleosynthesis abundance of the light elements, the cluster baryon
fraction fb can then be used to constrain Ωm and h (e.g., Ref. 30).
The baryons in clusters are primarily in the form of X-ray-emitting
gas that falls into the cluster, and secondarily in the form of stellar
baryonic mass. Hence, the baryon fraction in clusters is estimated to
be

fb =
Ωb

Ωm
≃ fgas + fgal , (1.16)

where fb = Mb/Mgrav, fgas = Mgas/Mgrav, fgal = Mgal/Mgrav, and
Mgrav is the total gravitating mass.

This can be used to obtain an approximate relation between Ωm

and h:

Ωm =
Ωb

fgas + fgal
≃

Ωb

0.08h−1.5 + 0.01h−1
. (1.17)
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Big Bang Nucleosynthesis gives Ωbh2 ≈ 0.02, allowing the above
relation to be approximated as Ωmh0.5 ≈ 0.25 (e.g., Ref. 31). For
example, Allen et al. [32] derived a density parameter consistent with
Ωm = 0.3 from Chandra observations.

1.3.6. Clustering in the inter-galactic medium:

It is commonly assumed, based on hydrodynamic simulations, that
the neutral hydrogen in the inter-galactic medium (IGM) can be
related to the underlying mass distribution. It is then possible to
estimate the matter power spectrum on scales of a few megaparsecs
from the absorption observed in quasar spectra, the so-called Lyman-
alpha forest. The usual procedure is to measure the power spectrum
of the transmitted flux, and then to infer the mass power spectrum.
Photo-ionization heating by the ultraviolet background radiation and
adiabatic cooling by the expansion of the Universe combine to give a
simple power-law relation between the gas temperature and the baryon
density. It also follows that there is a power-law relation between the
optical depth τ and ρb. Therefore, the observed flux F = exp(−τ) is
strongly correlated with ρb, which itself traces the mass density. The
matter and flux power-spectra can be related by

Pm (k) = b2 (k) PF (k) , (1.18)

where b(k) is a bias function which is calibrated from simulations.
Croft et al. [33] derived cosmological parameters from Keck Telescope
observations of the Lyman-alpha forest at redshifts z = 2 − 4. Their
derived power spectrum corresponds to that of a CDM model, which
is in good agreement with the 2dF galaxy power spectrum. A recent
study using VLT spectra [34] agrees with the flux power spectrum of
Ref. 33.

This method depends on various assumptions. Seljak et al. [35]
pointed out that errors are sensitive to the range of cosmological
parameters explored in the simulations, and the treatment of the
mean transmitted flux. Combination of the Lyman-alpha data with
WMAP suggested deviation from the scale-invariant n = 1 power
spectrum [7,6], but Seljak et al. [35] have argued that the combined
data set is still compatible with n = 1 model.

1.3.7. Gravitational lensing:

Images of background galaxies get distorted due to the gravitational
effect of mass fluctuations along the line of sight. Deep gravitational
potential wells such as galaxy clusters generate ‘strong lensing’, i.e.,
arcs and arclets, while more moderate fluctuations give rise to ‘weak
lensing’. Weak lensing is now widely used to measure the mass power
spectrum in random regions of the sky (see Ref. 36 for recent reviews).
As the signal is weak, the CCD frame of deformed galaxy shapes
(‘shear map’) is analyzed statistically to measure the power spectrum,
higher moments, and cosmological parameters.

The shear measurements are mainly sensitive to the combination
of Ωm and the amplitude σ8. There are various systematic effects
in the interpretation of weak lensing, e.g., due to atmospheric
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20 1. The Cosmological Parameters

distortions during observations, the redshift distribution of the
background galaxies, intrinsic correlation of galaxy shapes, and
non-linear modeling uncertainties. Hoekstra et al. [37] derived the

result σ8Ω
0.52
m = 0.46+0.05

−0.07 (95% confidence level), assuming a ΛCDM
model. Other recent results are summarized in Ref. 36. For a
Ωm = 0.3, ΩΛ = 0.7 cosmology, different groups derived normalizations
σ8 over a wide range, indicating that the systematic errors are still
larger than some of the quoted error bars.

1.3.8. Peculiar velocities:

Deviations from the Hubble flow directly probe the mass fluctuations
in the Universe, and hence provide a powerful probe of the dark
matter. Peculiar velocities are deduced from the difference between
the redshift and the distance of a galaxy. The observational difficulty
is in accurately measuring distances to galaxies. Even the best
distance indicators (e.g., the Tully-Fisher relation) give an error
of 15% per galaxy, hence limiting the application of the method
at large distances. Peculiar velocities are mainly sensitive to Ωm,
not to ΩΛ or quintessence. Extensive analyses in the early 1990s
(e.g., Ref. 38) suggested a value of Ωm close to unity. A more recent
analysis [39], which takes into account non-linear corrections, gives
σ8Ω

0.6
m = 0.49 ± 0.06 and σ8Ω

0.6
m = 0.63 ± 0.08 (90% errors) for two

independent data sets. While at present cosmological parameters
derived from peculiar velocities are strongly affected by random and
systematic errors, a new generation of surveys may improve their
accuracy. Two promising approaches are the 6dF near-infrared survey
of 15,000 peculiar velocities‡‡ and the kinematic Sunyaev-Zel’dovich
effect.

1.4. Bringing observations together

Although it contains two ingredients—dark matter and dark
energy—which have not yet been verified by laboratory experiments,
the ΛCDM model is almost universally accepted by cosmologists as
the best description of present data. The basic ingredients are given
by the parameters listed in Sec. 1.1.4, with approximate values of some
of the key parameters being Ωb ≈ 0.04, Ωdm ≈ 0.26, ΩΛ ≈ 0.70, and
a Hubble constant h ≈ 0.7. The spatial geometry is very close to flat
(and often assumed to be precisely flat), and the initial perturbations
Gaussian, adiabatic, and nearly scale-invariant.

The most powerful single experiment is WMAP, which on its own
supports all these main tenets. Values for some parameters, as given in
Spergel et al. [7], are reproduced in Table 1.2. This model presumes
a flat Universe, and so ΩΛ is a derived quantity in this analysis, with
best-fit value ΩΛ = 0.73.

However, to obtain the most powerful constraints, other data
sets need to be considered in addition to WMAP. A standard data
compilation unites WMAP with shorter-scale CMB measurements
from CBI and ACBAR, and the galaxy power spectrum from the 2dF

‡‡ See http://www.mso.anu.edu.au/6dFGS/
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Table 1.2: Parameter constraints reproduced from Spergel
et al. [7], both from WMAP alone and from the preferred data
compilation of WMAP+CBI+ACBAR (known as WMAPext)
plus 2dFGRS. The first two columns assume a power-law initial
spectrum, while the third allows a running of the spectral
index (in this case n is defined at a particular scale, and its
value cannot be directly compared with the power-law case).
Spatial flatness is assumed in the parameter fit. The parameter
A is a measure of the perturbation amplitude; see Ref. 7 for
details. Uncertainties are shown at one sigma, and caution is
needed in extrapolating them to higher significance levels due to
non-Gaussian likelihoods and assumed priors.

WMAP alone WMAPext + 2dFGRS WMAPext + 2dFGRS

power-law power-law running

Ωmh2 0.14 ± 0.02 0.134 ± 0.006 0.136± 0.009

Ωbh2 0.024± 0.001 0.023 ± 0.001 0.022± 0.001

h 0.72 ± 0.05 0.73 ± 0.03 0.71 ± 0.04

n 0.99 ± 0.04 0.97 ± 0.03 0.93+0.04
−0.05

τ 0.17+0.08
−0.07 0.15 ± 0.07 0.17 ± 0.06

A 0.9 ± 0.1 0.8 ± 0.1 0.84 ± 0.09

dn/d ln k - - −0.031+0.023
−0.025

survey. In our opinion, this combination of datasets offers the most
reliable set of constraints at present. In addition, it is possible to add
the Lyman-alpha forest power spectrum data, but this has proven
more controversial as the interpretation of such data has not reached
a secure level.

Using the extended data set without the Lyman-alpha constraints
produces no surprises; as compared to WMAP alone, the best-fit
values move around a little within the uncertainties, and the error bars
improve somewhat, as seen in Table 1.2. In this table we also show
the effect of allowing the spectral index to vary with scale (‘running’):
the running is found to be consistent with zero and there are small

drifts in the values and uncertainties of the other parameters.¶

However, inclusion of the Lyman-alpha data suggests a more
radical development, with the running weakly detected at around
95% confidence, the spectral index making a transition from n > 1
on large scales to n < 1 on small scales [7,6]. The significance
of this measurement is not high, and the result rather unexpected
on theoretical grounds (it suggests that the power spectrum has a
maximum which just happens to lie in the rather narrow range of

¶ As we were finalizing this article, an analysis of WMAP combined
with the SDSS galaxy power spectrum appeared [40], giving results in
good agreement with those discussed here.
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scales that observations are able to probe, and the running is much
larger than in typical inflation models giving a spectral index close to
one). In our view it is premature to read much significance into this
observation, though if true, it should rapidly be firmed up by new
data.

The baryon density Ωb is now measured with quite high accuracy
from the CMB and large-scale structure, and shows reasonable
agreement with the determination from big bang nucleosynthesis;
Fields and Sarkar in this volume quote the range 0.012 ≥ Ωbh2 ≥ 0.025.
Given the sensitivity of the measurement, it is important to note that
it has significant dependence on both the datasets and parameter sets
chosen, as seen in Table 1.2.

While ΩΛ is measured to be non-zero with very high confidence,
there is no evidence of evolution of the dark energy density. The
WMAP team find the limit w < −0.78 at 95% confidence from a
compilation of data including SNe Ia data, where they impose a
prior w ≥ −1, with the cosmological constant case w = −1 giving an
excellent fit to the data.

As far as inflation is concerned, the data provide good news and
bad news. The good news is that WMAP supports all the main
predictions of the simplest inflation models: spatial flatness and
adiabatic, Gaussian, nearly scale-invariant density perturbations. But
it is disappointing that there is no sign of primordial gravitational
waves, with WMAP providing only a weak upper limit r < 0.53 at 95%
confidence [6] (this assumes no running, and weakens significantly if
running is allowed), and especially that no convincing deviations from
scale-invariance have been seen. It is perfectly possible for inflation
models to give n ≃ 1 and r ≃ 0, but in that limit, the observations give
no clues as to the dynamical processes driving inflation. Tests have
been made for various types of non-Gaussianity, a particular example
being a parameter fNL which measures a quadratic contribution to
the perturbations and is constrained to −58 < fNL < 134 at 95%
confidence [41] (this looks weak, but prominent non-Gaussianity
requires the product fNL∆R to be large, and ∆R is of order 10−5).

Two parameters which are still uncertain are Ωm and σ8 (see
Figure 1.4 and Ref. 42). The value of Ωm is beginning to be pinned
down with some precision, with most observations indicating a value
around 0.3, including the CMB anisotropies, the cluster number
density, and gravitational lensing, though the latter two have a strong
degeneracy with the amplitude of mass fluctuations σ8. However, not
all observations yet agree fully on this, for instance mass-to-light ratio
measurements give Ωm ≈ 0.15 [43], and the fractional uncertainty
remains significantly higher than one would like. Concerning σ8,
results from the cluster number density have varied quite a lot in
recent years, spanning the range 0.6 to 1.0, primarily due to the
uncertainties in the mass-temperature-luminosity relations used to
connect the observables with theory. There is certainly scope for
improving this calibration by comparison to mass measurements from
strong gravitational lensing. The WMAP-alone measurements gives
σ8 = 0.9 ± 0.1. However, this is not a direct constraint; WMAP
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Figure 1.4: Various constraints shown in the Ωm–σ8 plane.
[Figure provided by Sarah Bridle; see also Ref. 42.]

only probes larger length scales, and the constraint comes from
using WMAP to estimate all the parameters of the model needed
to determine σ8. As such, their constraint depends strongly on the
assumed set of cosmological parameters being sufficient.

One parameter which is surprisingly robust is the age of the
Universe. There is a useful coincidence that for a flat Universe the
position of the first peak is strongly correlated with the age of the
Universe. The WMAP-only result is 13.4 ± 0.3 Gyr (assuming a flat
Universe). This is in good agreement with the ages of the oldest
globular clusters [44] and radioactive dating [45].

1.5. Outlook for the future

The concordance model is now well established, and there seems
little room left for any dramatic revision of this paradigm. A
measure of the strength of that statement is how difficult it has
proven to formulate convincing alternatives. For example, one corner
of parameter space that has been explored is the possibility of
abandoning the dark energy, and instead considering a mixed dark
matter model with Ωm = 1 and Ων = 0.2. Such a model fits both the
2dF and WMAP data reasonably well, but only for a Hubble constant
h < 0.5 [27,46]. However, this model is inconsistent with the HST
key project value of h, the results from SNe Ia, cluster number density
evolution, and baryon fraction in clusters.

Should there indeed be no major revision of the current paradigm,
we can expect future developments to take one of two directions.
Either the existing parameter set will continue to prove sufficient
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to explain the data, with the parameters subject to ever-tightening
constraints, or it will become necessary to deploy new parameters.
The latter outcome would be very much the more interesting, offering
a route towards understanding new physical processes relevant to
the cosmological evolution. There are many possibilities on offer for
striking discoveries, for example:

• The cosmological effects of a neutrino mass may be unambiguously
detected, shedding light on fundamental neutrino properties;

• Detection of deviations from scale-invariance in the initial pertur-
bations would indicate dynamical processes during perturbation
generation, for instance, by inflation;

• Detection of primordial non-Gaussianities would indicate that
non-linear processes influence the perturbation generation
mechanism;

• Detection of variation in the dark energy density (i.e., w 6= −1)
would provide much-needed experimental input into the question
of the properties of the dark energy.

These provide more than enough motivation for continued efforts to
test the cosmological model and improve its precision.

Over the coming years, there are a wide range of new observations,
which will bring further precision to cosmological studies. Indeed,
there are far too many for us to be able to mention them all here, and
so we will just highlight a few areas.

The cosmic microwave background observations will improve in
several directions. The new frontier is the study of polarization,
first detected in 2002. Data are imminent from balloon-based
experiments including Maxipol and Boomerang, and with WMAP
continuing to take data, they should be able to measure a polarization
spectrum, as well as improve measures of the temperature-polarization
cross-correlation (which is easier to measure as the temperature
anisotropies are much larger). Dedicated ground-based polarization
experiments, such as CBI and QUEST, promise powerful measures
of the polarization spectrum in the next few years, and may be able
to separately detect the two modes of polarization. Another area of
development is pushing accurate power spectrum measurements to
smaller angular scales, typically achieved by interferometry, which
should allow measurements of secondary anisotropy effects, such
as the Sunyaev-Zel’dovich effect, whose detection has already been
tentatively claimed by CBI. Finally, we mention the Planck satellite,
due to launch in 2007, which will make high-precision all-sky maps of
temperature and polarization, utilizing a very wide frequency range for
observations to improve understanding of foreground contaminants,
and to compile a large sample of clusters via the Sunyaev-Zel’dovich
effect.

Concerning galaxy clustering, the Sloan Digital Sky Survey is well
underway, and currently expected to yield around 600,000 galaxy
redshifts covering one quarter of the sky. Large samples of galaxy
positions at high redshifts (z ∼ 1) will begin to be obtained, for
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instance, by the DEEP2 survey using the Keck telescopes, and
the VIRMOS survey on the VLT. The 6dF survey aims to take
high-quality redshift and peculiar velocity data for a large sample of
nearby galaxies, and has already taken around 40,000 of the planned
170,000 redshifts.

Still awaiting final approval is the SNAP satellite, which seeks to
carry out a survey for Type Ia supernovae out to redshifts approaching
two, which should in particular be a powerful probe of the dark
energy. With large samples, it may be possible to detect evolution of
the dark energy density, thus measuring its equation of state. SNAP
is also able to carry out a large weak gravitational lensing survey,
complementing those becoming possible with large-format CCDs on
ground-based telescopes. Before SNAP, the ESSENCE project will
significantly increase the size of the SNe Ia dataset.

The development of the first precision cosmological model is a
major achievement. However, it is important not to lose sight of
the motivation for developing such a model, which is to understand
the underlying physical processes at work governing the Universe’s
evolution. On that side, progress has been much less dramatic. For
instance, there are many proposals for the nature of the dark matter,
but no consensus as to which is correct. The nature of the dark energy
remains a mystery. Even the baryon density, now measured to an
accuracy of a few percent, lacks an underlying theory able to predict
it even within orders of magnitude. Precision cosmology may have
arrived, but at present many key questions remain unanswered.
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