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Galaxy Formation
A galaxy is the environment in which stars are born and
die, and distant galaxies are the luminous beacons that
enable us to probe the distant universe. Our galaxy,
the Milky Way, is one of billions of such systems in the
observable universe. How galaxies formed represents a
central theme in modern cosmology.

At first glance, the universe appears to contain
two different types of galaxies: galaxies with disk-like
morphologies and galaxies with spheroidal morphologies.
This basic distinction breaks down, however, once
individual disk and spheroidal galaxies are examined in
detail, since most disk galaxies contain small spheroidal
components at their centers and most spheroidal galaxies
contain small disks at their centers.

Disks in and of themselves contain a wide variety of
features. Most DISK GALAXIES exhibit spiral arms with a large
range of winding angles and contrast. Approximately
half of all disk galaxies also contain a highly elongated
bar structure near their center, the bars possessing a
variety of axial ratios. Some disks also show moderate
deviations from planarity toward their edges (warps)
while other disks show significant lanes of dust across
their observed profiles. Similarly, ELLIPTICAL GALAXIES, while
possessing relatively uniform profiles compared to disk
galaxies, show a significant variety of substructure. At
least half of ellipticals have detectable shell structure and
others distinct cores. Finally, all galaxies, irrespective of
type, show great variations in the amounts and spatial
distribution of gas, dust, stars, and metal abundances
as well as their basic surface brightnesses, luminosities,
colours, and masses.

Despite their considerable diversity, galaxies show a
remarkable degree of uniformity as well. The profiles of
disk and ellipticals are remarkably homologous, the global
structural parameters of disk and spheroidal galaxies
define a tight two-dimensional plane, and the colours
and apparent star formation histories of both spiral
and elliptical galaxies show a striking correlation with
luminosity. Of great significance is that most galaxies
are very slowly evolving structures, both chemically and
dynamically. Their properties were acquired long ago, at
or soon after the epoch of galaxy formation.

Galaxies began as clouds of primordial gas, hydrogen
and helium. Even before galaxies condensed into distinct
clouds, infinitesimal density fluctuations were present
in the EXPANDING UNIVERSE. These originated at very early
epochs in an inflationary phase transition from a universe
that initially was relatively uniform. Fluctuations grew
in strength under the inexorable influence of self-gravity.
Eventually, clouds developed that fragmented into stars.
Much of the detailed physics in this schematic of GALAXY

EVOLUTION is now understood.
This review begins with a discussion of the

cosmological world model in which galaxies form,
discusses the processes by which the initial perturbations
are established, presents the theory for the growth of these

perturbations into collapsing and eventually virialized
objects, illustrates the importance of gas cooling in the
formation of galaxies, outlines the processes by which
galaxies acquire angular momentum, and concludes by
summarizing the basic observations and theory of disk
and elliptical galaxy formation.

World model
We begin by providing some background on the standard
world model and the primordial fluctuations out of which
galaxies are believed to have grown.

The apparent homogeneity and isotropy of the
observable universe, both in terms of its large-scale
structure and the cosmic infrared microwave background
radiation—the almost constant 2.73 K blackbody radiation
background in which the universe is immersed—motivate
the assumption that the universe is both homogeneous and
isotropic. By homogeneous, we mean that every point in
space statistically resembles every other point in space.
By isotropic, we mean there is no point in space where any
direction differs statistically from any other direction in
space.

Assuming universal homogeneity and isotropy,
Einstein’s theory of GENERAL RELATIVITY can be used to show
that the evolution of the scale of the universe follows the
two independent equations:
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collectively known as Friedmann’s equations, where a is
a measure of the size of the universe, p is the pressure,
k is the curvature, ρ is the density, and G is Newton’s
constant. Combined with the equation of state, these
equations completely determine a(t), ρ(t), and p(t).

These equations can be recast into the form:
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where �0 = 8πGρ0, �R,0 = 1/(H0a0R)
2, ��,0 = �/3H 2

0 , ρ0

is the matter density of the universe at the present epoch,
� is the vacuum energy density or cosmological constant,
andR is a constant with units of length. Hubble’s constant,
denoted byH0, characterizes the rate at which the universe
is expanding at the present epoch. It is the constant of
proportionality relating an object’s distanceD to its rate of
recession v:

v = H0D. (5)

Note that �R,0 = 1 −�0 −��,0.
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As the universe expands, the gravitational attraction
of the mass inside it slows this expansion. This
deceleration may or may not be enough to slow this
expansion sufficiently so that the universe recollapses.
The case where there is sufficient matter to cause such a
recollapse corresponds to a universe where the universal
geometry is closed, i.e., k = +1. The case where there is
not sufficient matter to force such a recollapse corresponds
to two separate geometries: one in which the universal
geometry is flat (k = 0) and one in which the universal
geometry is open (k = −1). Auniverse with a flat geometry
is known as Einstein–de Sitter.

The time evolution of the universal scale length a

is amenable to the following simple analytic solution in
the case of an Einstein–de Sitter universe where ordinary
matter dominates the energy density (p = 0; ρ ∝ (1+z)−3):

a = a0(t/t0)
2/3 (6)

where t0 and a0 are the current age and size of the universe,
respectively.

For an open universe, the solution is given in terms
of the following parametric equations:

a = �0

(1 −�0)3/2

c

2H0
(cosh�− 1) (7)

t = �0

(1 −�0)3/2

1
2H0

(sinh�−�) (8)

while for a closed universe, the parametric equations are

a = �0

(�0 − 1)3/2

c

2H0
(1 − cos�) (9)

t = �0

(�0 − 1)3/2

1
2H0

(�− sin�). (10)

The turn-around time tm for this universe occurs when
� = π , so from equation (10), we find

tm = �0

(�0 − 1)3/2

π

2H0
(11)

for the turn-around time.
Requiring that the curvature be identical everywhere

in space-time, the most general way of expressing the
concept of distance is the Friedmann–Robertson–Walker
metric:

dl2 = a2R2 [
dχ 2 + f 2(χ)(dθ2 + sin2 θdφ2)

]
(12)

where

f (χ) =



sin χ, k = +1
χ, k = 0
sinh χ, k = −1.

(13)

The two-dimensional analogue to the Friedmann–
Robertson–Walker metric is

dl2 = a2 [
dχ 2 + f 2(χ)dθ 2] (14)
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Figure 1. The topology of space in a closed (k = +1)
two-dimensional universe. The coordinates (χ, θ ) define the
position of a point P in this universe. The angular width φ of an
object of size d is illustrated.

which is more amenable to our everyday intuition,
especially in the case of a closed k = +1 universe where

dl2 = a2 [
dχ 2 + sin2 χ dθ 2] . (15)

This is simply the expression for the distance on the surface
of a sphere where θ is the azimuthal coordinate and where
χ is the tangential coordinate (figure 1).

The wavelengths of photons expand, or REDSHIFT,
along with the universe. The redshift of an object is a
measure of how much the universe and, therefore, the
wavelength of that object’s photons have expanded until
the present. A redshift of zero indicates the present.
Quantitatively, we express the relationship between the
size of the universe a and its redshift z as

a ∝ 1
1 + z

. (16)

Using solutions to Friedmann equations, one may
derive both the age of the universe and the effective
distances to objects which existed at earlier epochs. By
integrating up the infinitesimal times

dt = 1
ȧ
da = 1

aH0E(z)

a dz
1 + z

= dz
H0E(z)(1 + z)

(17)

one can compute the age of the universe:

t = 1
H0

∫ ∞

z=0

dz
E(z)(1 + z)

. (18)

Similarly, one may readily derive expressions for
the distance though there is one subtlety. Two
different measures of distance are standardly discussed in
cosmology: the angular-size distance and the luminosity
distance. Both distances are defined so that the standard
expressions involving these quantities apply. The former,
the angular-size distance, commonly denoted DA, is
defined in analogy with the expression

θ = d

DA
(19)
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where d is an object’s intrinsic size and θ is the angular size
of the object on the sky in radians. Similarly, the latter, the
luminosity distance, commonly denoted DL, is defined in
analogy with the expression

f = L

4πD2
L

(20)

where f is the observed flux and L is the intrinsic
luminosity.

We now provide a heuristic derivation of the above
equations. Imagine that the light from some object with
size d, redshift zobs, and tangential coordinate χ converges
toχ = 0 and z = 0 on paths where dθ = 0. Along this path,
the expression for the metric reduces to dl2 = a2R2dχ 2.
The integrated coordinate distance χ is then

χ =
∫ zobs

z=0

dl
aR

=
∫ zobs

z=0

c dt
aR

= 1
H0a0R

∫ zobs

z=0

c dz
E(z)

. (21)

The object is observed at tangential coordinate χ at some
previous time, and the distance of this object (at χ and zobs)
from the z-axis (see figure 1) is

r(z) = a(z)R sin χ = a0R

1 + z
sin χ. (22)

Clearly, the angle φ emanating from the top of the sphere
intersecting our object of size d at some distance r from the
z-axis is d/r , so

φ = d

r
. (23)

Identifying DA in equation (19) with r(z) in equation (23)
yields

DA = r(z) = a0R

1 + z
sin χ

= a0R

1 + z
sin

[
1

H0a0R

∫ zobs

z=0

c dz
E(z)

]
. (24)

A heuristic derivation of the luminosity distance is
similarly possible. Imagine the light emitted from some
object at redshift zobs and χ = 0 propagates to some
χ reaching it at z = 0. This light would have spread
out over a ring of radius 2πr(0), where r(0) is again the
distance from the points at χ and the z-axis. Hence,
f = L/2πr(0). The obvious three-dimensional analogue is
f = L/4πr(0)2. Multiplying the flux by a factor of 1/(1+z)
to account for time dilation and 1/(1 + z) to account for the
energy loss due to photon redshifting, one obtains

f = L

4πr(0)2(1 + z)2
. (25)

Identifying r(0)(1 + z) in equation (25) with DL in
equation (20) yields

DL = r(0)(1 + z)

= a0R(1 + z) sin
[

1
H0a0R

∫ zobs

z=0

c dz
E(z)

]
. (26)

As in our derivation of the angular and luminosity
distances, it is easy to see that the apparent surface
brightness of objects decreases as (1 + z)−4, a factor of
(1 + z)−1 due to time dilation, a factor of (1 + z)−1 due to
a redshifting of the photons, and a factor of (1 + z)−2 to
account for its larger angular size on the sky.

Origin of fluctuations
INFLATION is a popular scenario for producing the small
matter overdensities, or seeds, on which mass accretes
and galaxies later form. The popularity of inflation
derives from the relatively natural explanation it provides
for establishing the initial conditions from which our
universe seems to have evolved. Not only does it explain
the homogeneity of the universe on large scales, but
it also solves the problem of the relative absence of
objects like magnetic monopoles or other types of massive
topological defects. It provides a natural explanation
for the apparent flatness of the universe although the
observational evidence for this still might be considered
preliminary.

Inflation is initiated at the temperature scale corre-
sponding to the breaking of the symmetry of grand uni-
fication (T ∼ 1016 GeV, at t ∼ 10−35 s) as the universe
expands and cools through a brief period of supercooling.
The associated release of scalar field energy results in an
exponential increase in the scale factor, and corresponding
reduction in temperature, and is followed by a period of re-
heating when the associated field kinetic energy thermal-
izes. This early epoch of exponential expansion is driven
by the evolution of a scalar inflation field φ and potential
V , the field evolving as

φ̈ + 3
ȧ

a
+

dV (φ)
dφ

= 0. (27)

The pressure and density are

pφ = φ̇2 + V (28)

ρφ = φ̇2 − V (29)

where the inflation potential is such that V >> φ̇2, so
ρ = −p = V as in the case of a non-zero cosmological
constant.

Zero point fluctuations of the scalar field are
imprinted on the causal horizon scale, which increases
exponentially. The causal horizon is greatly enlarged, to
encompass all of the universe observed today, and the
reheating process imprints a scale-invariant distribution
of energy density fluctuations. A perturbative analysis
of this scalar field’s evolution predicts a power spectrum
with slope close to unity: P(k) ∝ k, where k is the
wavenumber defined via the Fourier transformation of
the underlying Gaussian-distributed density field ρ(x, t) :
δk = ∫

ρ(x, t)eik·xd3x. This power spectrum is called
the Harrison–Zeldovich scale-free power spectrum. The
amplitude of the fluctuations is not predicted by the
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inflationary theory. However the prediction of scale-
invariance is generic to many, although not all, inflationary
models. Scale-independent curvature fluctuations are
equivalent to density fluctuations on the horizon scale of
fixed amplitude. On superhorizon scales, an invariant
δφ = GδM/L c2 = δρ/ρ)(L/ct)2 = (δρ/ρ)L2

comoving (a/ct)
2

can be found which does not change with time.
The energy density of photons and other massless

particles scales as (1 + z)4 while the energy density
of nonrelativistic massive particles scales as (1 + z)3.
Consequently, there is an epoch of matter-radiation
equality before which the energy density of the universe
is dominated by radiation (massless particles), and after
which the energy density of the universe is dominated by
matter (massive particles). The redshift at this epoch is

1 + zeq = ρm0

ρr0
= 3 × 104 �h2 (30)

where the matter density is ρm = ρm0(1+z)3 and relativistic
density is ρr = ρr0(1 + z)4. The horizon scale at this epoch
is Leq ≡ 2 cteq = 12h−1 Mpc, in comoving coordinates.

During the radiation-dominated era, perturbations in
the primordial power spectrum (δρ/ρ) grow in proportion
to the square of the universal scale-factor a2. The
growth of perturbations stalls once they get inside the
horizon (Hubble radius) since the time scale for the
growth of perturbations (∝ (ρmatG)

−1/2) is large compared
to the expansion rate of the universe (∝ (ρtotG)

−1/2).
However once the universe becomes matter-dominated,
perturbations resume growth, but now in proportion to
a, the universal scale-factor, instead of the square of this
scale.

The stalling of growth on small scales within the
Hubble radius imprints itself on the power spectrum
which survives the transition to a matter-dominated
universe. Subhorizon density fluctuations have a
distribution with scale δρ/ρ ∝ L−2

comoving ∝ M−2/3, on scales
� Leq, while on larger scales growth suppression implies
that δρ/ρ ≈ constant. Mathematically, we include this
effect by multiplying the primordial power spectrum Pp

for linearized fluctuations in a stochastic density field by
the transfer function

Pf(k) = T (k)Pp(k) (31)

to obtain the final processed power spectrum Pf . An
approximate analytical fit of a transfer function calculated
numerically is given by

T (k) = log(1 + 2.34q)
(2.34q)

× [
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4

(32)

where q = (k/Mpc/(�h2)) (Peacock 1997, Bardeen et al
1986) and h = H0/(100 km s−1 Mpc−1). Here we note
that the above power spectrum results in a bottom-up
sequence of evolution, smaller scale fluctuations reaching
large amplitude before the large-scale fluctuations.

Dissipationless non-radiative matter, known other-
wise as DARK MATTER, is now a standard part of the paradigm
for galaxy formation. It is important in reconciling the
power spectrum observed in the COSMIC MICROWAVE BACK-

GROUND with the local power spectrum observed in galax-
ies. Nonbaryonic dark matter makes this possible be-
cause the growth of fluctuations is able to commence im-
mediately after the era of matter-radiation equality. The
growth of fluctuations in the baryonic component is, by
contrast, suppressed because of its coupling to radiation
background. Eventually, as the universe expands, it be-
comes cool enough so that radiation decouples from the
baryons, an event known as last scattering. At this point,
the mass scale above which fluctuations can grow sud-
denly drops from ∼ 1016M
 to ∼ 106M
, and so the fluctu-
ations in the baryonic component are free to grow with the
rest of the universe. Since the dark matter component is
the densest portion of the universe, it controls the growth
of fluctuations, and soon after decoupling, the baryonic
component is boosted in amplitude by ∼ (1+zeq)/(1+zLS),
zLS being the redshift at last scattering.

Remarkably, the acoustic modes set up in the baryonic
component prior to last scattering are observable via their
imprint on the cosmic microwave background radiation
which provides a snapshot of fluctuations at last scattering.
This may be seen as follows. The dispersion relation for
fluctuation growth at rate eiωt is

ω2 = k2V 2
S − 4πGρ (33)

(VS being the sound speed) for time scales short compared
to the expansion time, or equivalently for wavelengths
2π/h � ct . Such wavelengths oscillate as sound waves
with amplitude proportional to exp(ik VS t). Inflation
specifies primordial curvature fluctuations which are time-
invariant on superhorizon scales. The corresponding
amplitude corresponds to the mode cos(k VS t) which is
finite as k → 0. At tLS the maximum amplitude in
δT /T is attained by fluctuations which have entered the
horizon and satisfy kVSt = πn, with n = 1, 2, . . . .
Clearly the wave that crests on the horizon at tLS and
undergoes oscillations systematically experiences both
Compton drag and diffusive damping. The net result is the
amplitude is diminished and only the first three or so peaks
are detectable. Doppler effects contribute 90 degrees out of
phase to the gravitational potential induced δT /T peaks,
and the net result is a series of peaks corresponding to the
maximum in δT /T = | 1

3 δφ − r · v + 1
3 δρ/ρ| . The predicted

enhancement of the first peak of wavelength 2VS tLS is as
large as a factor of three relative to the k → 0 or Sachs–
Wolfe potential fluctuation limit that corresponds to the
inflationary imprint of primordial, nearly scale-invariant
curvature fluctuations.

The observational situation is as follows. The
COBE DMR experiment measured potential fluctuations
on angular scales ≥ 10◦. The last scattering horizon
is about 1◦. Several experiments report evidence for
the first acoustic peak on this scale, and definitive
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measurements with large sky coverage that provide
adequate foreground discrimination were performed in
2000 by the Boomerang and Maxima balloon experiment
collaborations (de Bernardis et al 2000, Hanany et al 2000).
The situation is complicated by the contribution from
the time-varying potential perturbations δT /T ∼ ∫

φ̇ dt
which arise in models with� < 1 at curvature-dominated
epochs, i.e. z � �−1 − 1 and are expected at angular scales
� 1◦. A final complication is the possible tensor mode
contributions; this gravity wave background contributes
to the energy density in the radiation-dominated era and
only affects the low order multipoles corresponding to
angular scales that are larger than the horizon angular scale
at teq.

Linear evolution of density fluctuations
Gravitation magnifies the initial perturbations in the
matter distribution, both dark and baryonic. While these
perturbations initially grow linearly, eventually these
perturbations stop expanding, break away from Hubble
flow, and then collapse and virialize. Galaxies form from
the gas which cools onto the center of these collapsed
masses, called dark halos.

An analysis of the growth of the initial matter power
spectrum begins with the basic fluid equations in terms of
the density ρ, the velocity u, the gravitational potential -,
the pressure p, and the time t :

∂ρ

∂t
+ ∇ · (ρu) = 0, ρ

Du

Dt
= −∇p − ρ∇-. (34)

For convenience, we change variables to comoving
coordinates x = r/a, to peculiar velocities v = adu/dt , to
dimensionless overdensities δ = ρ/ρ̄−1, and to conformal
times τ = t/a. Making these substitutions, the fluid
equations become

v = ẋ (35)

δ̇ + ∇ · [(1 + δ)v] = 0 (36)

v̇ + v · ∇v +
ȧ

a
v = − ∇p

ρ
− ∇- (37)

while Poisson’s equation reads

∇2- = 4πGρ̄a2δ. (38)

The behavior of the modes can be obtained by taking the
divergence of Euler’s equation, eliminating ∇ · v = 0 by
the continuity equation, taking-, δ, and v to be small, and
then linearizing the equations. One obtains

δ̈ +
ȧ

a
δ̇ = ∇2p

ρ
+ 4πGρ̄a2δ. (39)

If we consider a pressure-free universe, this equation
involves no spatial derivatives, so its solution can then
be written as

δ(x, τ ) = A(x)f1(τ ) + B(x)f2(τ ). (40)

Using the fact that� = 8πGρ/3H 2 = 8πGρa2/3ȧ2, we can
rewrite equation (39) as

δ̈ +
ȧ

a
δ̇ − 3

2
�

(
ȧ

a

)2

δ = 0. (41)

For an Einstein–de Sitter universe (� = 1), a ∝ τ 2 ∝ t2/3

and equation (41) becomes

δ̈ + 2
δ̇

τ
− 6

δ

τ 2
= 0. (42)

For solutions, one obtains a growing mode δ ∝ D(τ) ∝
τ 2 ∝ t2/3 and a decaying mode δ ∝ D(τ) ∝ τ−1 ∝ t−1/3.
D(τ) is known as the linear growth factor. Given the small
size of the perturbations at the era of matter–radiation
equality, one ignores the decaying mode solution and
simply considers the growing mode. For the more general
case of a universe without a cosmological constant (i.e.,
�� = 0), it can be shown (Peebles 1980) that

D(τ) = 1 +
3
x

+
3(1 + x)1/2

x3/2
ln

[
(1 + x)1/2 − x1/2] (43)

where x = �−1 − 1 ∝ a.
Before finishing this discussion, we examine the

evolution in position and velocity of a test particle
because these quantities will prove useful later when we
look at how galaxies acquire ANGULAR MOMENTUM. Since
∇2-0 = 4πGρ̄a2δ is a constant in the linear regime for
an Einstein–de Sitter universe, the linearized version of
Euler’s equation can be immediately integrated to give

v = −
(
a−1

∫
Ddτ

)
∇-0. (44)

Integrating the peculiar velocity gives us:

x = x0 −
(∫

dτ
a

∫
Ddτ

)
∇-0. (45)

Since the growth factorD(τ) is a solution to the fluctuation
growth equation d

dτ (aδ̇) = 4πGρ̄a3δ (see equation (39)), it
follows that

x = x0 − D(τ)

4πGρ̄a3
∇-0 (46)

and

v = − Ḋ

4πGρ̄a2
∇-0. (47)

This essentially Lagrangian view to the growth of
perturbations is due to Zeldovich (1970).

Mean square fluctuations
It is useful to consider the evolution of the mean square
mass fluctuations filtered on various spatial scales R

because of the information it provides on the collapse
of structure on these spatial scales. Due to the scale-
free growth of initial perturbations, the power spectrum
P(k, τ )

P (k, τ ) =
∣∣∣∣
∫

d3xδ(x, τ )eik·x
∣∣∣∣
2

(48)
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grows as D(τ)2 just as δ(x, τ ) does.
Assuming that a section of the power spectrum can

be written as

P(k, τ ) ∝ D(τ)2kn (49)

where n is the power spectrum index, we find that the
mean square fluctuations filtered on a particular mass scale
are

σ 2(M) = 〈
(dM/M)2〉

=
∫

d3kW(kR)P (k, τ )

∝ D(τ)2R−3−n

∝ D(τ)2M−(n+3)/3 (50)

where W(kR) is a window function that filters out spatial
scales of R or smaller. The top hat filter of radius R

W(k) = 3
kR3

(sin kR − kR cos kR). (51)

is one commonly used window function. Note that
σ(M, 0) = (M/Mnl)

−(n+3)/6 where Mnl = 1 × 1015σ8�h
−1M


corresponds to mass fluctuations of amplitude unity on
8h−1 Mpc radius spheres. The factor σ8 is σ(M, 0) at 8h−1

Mpc for the mass density: galaxy count fluctuations have
unit amplitude on this scale.

Halo scaling relations
The growth of fluctuations becomes nonlinear and start
collapsing into virialized objects when

〈
(δM/M)2〉 = 1. (52)

From equation (50), this implies that

M ∝ D(t)6/(3+n). (53)

The density ρ, size r , and temperature T of collapsed
objects then scale as

ρ ∝ (1 + z)3 (54)

r ∝ (M/ρ)1/3 ∝ (1 + z)D(t)6/(3+n) (55)

T ∝ V 2
c ∝ GM

r
∝ M2/3ρ1/3

∝ (1 + z)1D(t)4/(3+n). (56)

These scaling relationships will be useful in later
discussions, particularly when we examine the cooling of
gas in virialized structures.

Spherical collapse model
To understand the nonlinear growth of structure, it is
convenient to consider the idealized spherical ‘top hat’
collapse model. Here, one supposes there to be spherically
symmetric regions of radiusR and of uniform overdensity
δ̄ in an otherwise uniform universe at some initial time ti.
At these early times, the universe will be approximately
Einstein–de Sitter, so we can express this overdensity as
the sum of the growing and decaying modes:

δ = δ+

(
t

ti

)2/3

+ δ−

(
t

ti

)−1

. (57)

We take the matter in this region to be expanding at the
approximately the same rate as the universe, and therefore
we require that the peculiar velocity be zero:

2
3 δ+(ti)− δ−(ti) = 0. (58)

Therefore, δ+ = 3
5 δ. According to Birkhoff’s theorem, in

a spherically symmetric situation, matter external to the
sphere will not influence its evolution, so it follows that

d2R

dt2
= −GM

R2
= −4πG

3
ρ̄(1 + δ̄)R (59)

which is identical in form to the equation for the evolution
of the cosmological scale factor a,

d2a

dt2
= −GM

a2
= −4πG

3
ρ̄a. (60)

Therefore, the size of the region R evolves like the cosmic
scale factor a but with an initial density parameter �p(ti)

given by

�p(ti) = ρ(ti)(1 + δ̄)

ρc(ti)
(61)

where ρc(ti) is the critical density (3H 2
i /8πG at time ti).

By analogy with the solutions for the universe, the region
will collapse if �p > 1. By analogy with equation (4), the
expansion of the region evolves according to

(
ȧ

a

)2

= H 2
i

[
�p(ti)

a3
i

a3
+ (1 −�p(ti))

a2
i

a2

]
. (62)

Eventually, the region stops expanding, turns around, and
collapses. At the turn-around time tm, ȧ = 0, implying that
a/ai = �p(ti)/(1 − �p(ti)). The density at turn-around tm
is then

ρp(tm) = ρc(ti)�p(ti)

[
�p(ti)− 1
�p(ti)

]3

. (63)

By analogy with the solutions to the cosmological
equations for closed universes (see equations (9)–(11)), we
can determine tm as

tm = π

2Hi

�p(ti)

[�p(ti)− 1]3/2
= π

2Hi

[
ρc(ti)

ρp(tm)

]1/2

=
[

3π
32Gρp(tm)

]1/2

. (64)
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For an Einstein–de Sitter universe, the density ρ(tm) of the
universe at turn-around is simply

ρ(tm) = 1
6πGt2

m
(65)

so that

χ = ρp(tm)

ρ(tm)
=

(
3π
4

)2

≈ 5.6. (66)

Formally, after turn-around, the region will collapse to
a point at t = 2tm. Of course, before that happens,
shell crossings will occur. From the virial theorem,
dissipationless matter collapses to a radius that is one-half
the turn-around radius. Since a ∝ t2/3, the universe will
expand by 22/3. Hence, the density of the region relative
to the background universe at collapse tc is

ρp(tc)

ρ(tc)
= (22/3)38χ ≈ 180. (67)

An extrapolation of the linear growth estimate at time tc
yields

δ+(tc) = 3
5
δi

(
2tm
ti

)2/3

= 3
5

(
3π
2

)2/3

≈ 1.68. (68)

The assumption of a uniform spherical overdensity in
an otherwise uniform universe is quite unrealistic; in
fact, collapse typically proceeds toward the creation of a
large number of two-dimensional pancakes. Nevertheless,
numerical simulations show the basic scalings derived
here to be roughly correct and useful for making simple
analytic estimates.

Form of collapsed structures
For many years, the profiles of collapsed halos were taken
to be that of a isothermal sphere:

ρ(r) = V 2
c

4πGr2
(69)

where r is the radius and Vc is the circular velocity.
Over the last few years, however, the detailed N -body
simulations of Navarro et al (1997) have shown that the
collapsed matter profile is better fitted by the double
power-law profile:

ρ(r) = ρcrit
δ0

(r/rs)(1 + r/rs)2
(70)

where rs is the core radius where the slope of the power-
law changes from −1 near the center to −3 at large radii
and r200 is the virial radius of the halo. More recent high
resolution simulations find a somewhat steeper innermost
slope to the density profile, possibly as steep as −1.5 (Jing
and Suto 2000, Moore et al 1999).

Press–Schechter model
A convenient and somewhat approximate description of
the mass function of halos at particular redshifts is given
by the Press–Schechter formalism derived heuristically by
Press and Schechter (1974) using linear growth theory and
the spherical ‘top hat’ model. The mass function of non-
linear objects is computed with the aid of linear theory on
the assumption that the probability distribution of density
fluctuations at a given mass and redshift is Gaussian,
centered on the mean σ(M, z) ≡ 〈

(δρ/ρ)2
〉1/2.

Since the set of initial perturbations is Gaussian-
distributed and remains so under linear growth, we can
write the distribution of mass fluctuations δM as

P(δM)dδM = 1√
2πσ(M)

exp
( −δ2

M

σ(M)2

)
dδM (71)

where σ(M) is equal to the mean square mass fluctuations
〈(δM/M)2〉 defined earlier.

The fraction of points where the mean density inside
a radius R exceeds δc is

P>δc(M) =
∫ ∞

δc

P(δM)dδM. (72)

Press and Schechter (1974), using the spherical collapse
model as a heuristic guide, took all regions where the
mean density exceeded the critical value needed for linear
collapse, i.e., δc ≈ 1.68, to be part of collapsed structures
at least as massive as M = 4πρ̄a3R3/3.

Then, to distinguish the fraction of structures which
have just collapsed to a massM and those that are part of a
bigger structure at least as massive asM +dM , we subtract
P>δc(M + dM) from P>δc(M). Notice that by doing this, we
completely ignore the possibility that the mass scale just
collapsing is contained within a larger mass that is just
collapsing, a complication known as the ‘cloud-in-cloud’
problem. Another problem is that only half of the points
are associated with an overdensity and therefore become
part of any collapsed structure. Press and Schechter (1974)
elected to solve this problem somewhat arbitrarily by
multiplying the number of structures at a given mass scale
by a factor of 2 with the vague understanding that this
represents flow from underdense to overdense regions.

The number of halos n(M) with masses between M

and M + dM is

n(M)MdM = 2ρM[P>δc(M)− P>δc(M + dM)]dM, (73)

ρm being the average density at the redshift in question
and the mass term M on the left-hand-side accounting for
the fact that more massive halos are associated with more
points of reference. Rewriting this, we get

n(M)dM = 2ρM

M

∣∣∣∣dP>δc(M)

dM

∣∣∣∣ dM

= 2ρM

M

∣∣∣∣dP>δc(M)

dσ(M)

∣∣∣∣
∣∣∣∣dσ(M)

dM

∣∣∣∣ dM. (74)
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Finally, since the mean square fluctuations σ 2(M) evolve
asD(τ)2 according to linear growth (see equation (50)), we
can rewrite the expression as

n(M)dM = 2ρM

M2

δM

σ(M)

1√
2πσ(M)

× exp
( −δ2

c

2σ(M)2

) ∣∣∣∣dσ(M)

dM

∣∣∣∣ d lnM. (75)

This is the Press–Schechter mass function at redshift z.
Despite the extremely heuristic nature of this derivation
and the many problems already discussed, it agrees
remarkably well with numerical simulations, and thus
has proven very useful in characterizing the growth of
structure.

Cooling processes
Galaxies are much less massive than the mass scales (∼
1014M
) going nonlinear in the universe today, so clearly
galaxies must be more than simply virialized structures.
The key seems to be the process of cooling and the time
scale for the settling of baryons into the centers of their dark
matter halos. There are several cases to consider. Clearly,
if the cooling time of a gas is larger than the Hubble time,
the gas cannot have evolved much over the history of the
universe. If the cooling time is smaller than the Hubble
time but larger than the dynamical time, the gas will suffer
slow quasistatic collapse into the center of the virialized
halo. On the other hand, if the cooling time is smaller than
the dynamical time, the ambient gas will undergo run-
away cooling and collapse to the center of the virialized
halo. It is this case, where the cooling time is much shorter
than the dynamical time scales for ACCRETION or merging
(Binney 1977, Rees and Ostriker 1977, Silk 1977) that is
relevant for the formation of galaxies.

There are four important processes by which gas
in halos cools: Compton cooling, free–free emission
(bremsstrahlung), recombination, and collision-induced
de-excitation.

We begin with a consideration of the Compton cooling
process. When low-energy photons pass through a gas of
non-relativistic electrons, they scatter off the electrons with
the Thompson cross-section σT:

σT = 8π
3

(
e2

mec2

)2

(76)

where me is the mass of the electron and e is the charge
of the electron. Some photons are scattered up in energy
and some are scattered down, but the net effect is to slow
the electrons relative to the frame of the cosmic microwave
background radiation. The mean shift in photon energy
per collision is

h6ν = 4kTe

mec2
hν (77)

where k is Boltzmann’s constant, h is Planck’s constant, ν
is the frequency of a photon, and Te is the temperature of

the electron gas. In a sea of photons with temperature Tγ ,
the mean rate of energy loss per electron is

dE
dt

= 4kTe

mec2
σTaT

4
γ (78)

where a is the Stefan–Boltzmann constant. The cooling
time tcool is

tcool =
3
2nkTe

ne
4kTe
mec2 σTaT 4

γ

= 3mec
2

8σTaT 4
γ

∼ 2.1 × 1012(1 + z)−4 yr. (79)

High temperature (106–107 K) primordial gases are almost
entirely ionized. Under these circumstances, the dominant
cooling mechanism is due to the acceleration of electrons
off the bare H+ and He2+ nuclei. This results in a cooling
rate per unit rate per unit volume:

dE
dt

∝ nenHT
1/2. (80)

The cooling time tcool here is approximately equal to

tcool =
3
2nkT

dE
dt

= 6.6 × 109 T
1/2

6

n−3
yr (81)

where T6 = T/106 K and n−3 = n/10−3cm−3.
On the other hand, low temperature (104–105 K)

primordial gases are only partially ionized. Here cooling
is dominated by two processes: one where electrons
recombine with ions resulting in the release of a photon
(recombination) and one where electrons collide with
partially ionized atoms, thereby exciting them to a state
which they escape by the release of a photon. The total
cooling rate can be expressed as

dE
dt

∝ nenHf (T ). (82)

The latter process is the dominant one, and for primordial
abundances, the function f (T ) can be approximated as
2.5(T /106 K)−1/2 erg cm3 s−1. The cooling time tcool is then

tcool =
3
2nkT

dE
dt

= 3.0 × 109 T
3/2

6

n−3
yr. (83)

We compare these cooling time scales with the
dynamical time scales tdyn ∼ √

1/Gρ. We consider a
uniform spherical cloud with massM in virial equilibrium
with f fraction of its mass in dissipative baryonic matter
and the rest in dark, dissipationless matter, so the gas mass
Mg is equal to fM . For this mass configuration,

tdyn ∼
√

1
Gρ

∼
√

1
Gn/f

∼ 6.5 × 109f 1/2n
−1/2
−3 yr. (84)

Now, we compare this dynamical time scale with the
cooling times derived for each of the cooling processes
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discussed above. At early times, z > 10, the Compton
cooling process dominates, and since

n−3 = 2.3 × 10−2 f (1 + δ)(�0h
2)(1 + z)3 (85)

the dynamical time scale goes as

tdyn ∼ 3.0 × 109(�0h
2)−1/2(1 + z)−3/2 yr (86)

and the relative time scale τ goes as

τ = tcool

tdyn
≈ 6 × 102(1 + z)−5/2. (87)

Thus, Compton cooling will be important at z > 7 where
τ < 1. Notice that the relative time scale does not depend
upon mass, temperature, or density. Therefore, if galaxies
formed at early times, they would have no preferred scales.

The relevant temperatures for lower mass halos (�
1012M
) are less than 106 K. In this case, line cooling
dominates and the relative time scale τ goes as tcool/tdyn ∝
(T 3/2/ρ1/2) ∝ ((M2/3ρ1/3)3/2/ρ1/2) ∝ M . Therefore, the
τ = 1 line runs parallel to lines of constant mass. To
determine the mass limit more precisely, we look at τ :

τ = tcool

tdyn
= 0.4T 3/2

6 f −1/2n
−1/2
−3 . (88)

We can relate this to the mass of a spherical cloud model
in virial equilibrium by using the following relation from
the virial theorem:

3kT
2µ

= 0.3GM
R

, (89)

where µ, the mean molecular weight, is roughly equal to
half the proton massmp since the medium is ionized. From
this, it follows that T 3 ∝ ρM2 ∝ nf −1M2 and then that

Mg = 1.2 × 1013T
3/2

6 f 3/2n
−1/2
−3 M
. (90)

Hence,

τ = Mg

1.2 × 1013f 2M

= M

1.2 × 1013fM

. (91)

This sets the mass limit below which gas can effectively
cool to form structures. For f ∼ 1, the mass limit is much
larger than the typical limiting galaxy mass (∼ 1012M
),
but for smaller values consistent with constraints set by
big-bang NUCLEOSYNTHESIS (f ∼ 0.05 − 0.1), the mass limit
is comparable to these limits.

On the other hand, for higher mass halos (� 1012M
),
the relevant temperatures are greater than 106K . Here the
dominant cooling mechanism is bremsstrahlung, and the
relative time scale ratios τ go as tcool/tdyn ∝ (T 1/2/ρ1/2) ∝
((M2/3ρ1/3)1/2/ρ1/2) ∝ R, so the τ = 1 line runs parallel to
lines of constant radius. To determine the limiting radius
more precisely, we look at τ

τ = tcool

tdyn
= T

1/2
6 f −1/2n

−1/2
−3 . (92)

Using the spherical cloud model again, we solve for R in
terms of the other variables,

R =
√

3f kT
0.8πµ2Gn−3

= 610f T 1/2
6 n

−1/2
−3 kpc (93)

and so

τ = R

610f 3/2 kpc
. (94)

Hence, for f ∼ 0.1, massive gas clouds of radii greater
than 20 kpc can efficiently cool. Since this length is smaller
than the typical cluster size, cooling is not very efficient
in clusters, and therefore the gas simply suffers slow
quasistatic collapse.

The galaxy cluster mass function
In the previous section, we discussed two important
different regimes for virialized masses, one in which the
cooling time was longer than the dynamical time and one
in which it was shorter than it. In the former regime, one
obtains GALAXY CLUSTERS where most of the gas remains hot
and in the latter regime one obtains galaxies where much of
the halo gas has apparently cooled. In either case, one can
use Press–Schechter theory to calculate the mass function,
and with simple assumptions about the conversion of gas
into stars or other luminous objects, one can convert this
into a LUMINOSITY FUNCTION OF GALAXIES.

Perhaps the most direct comparison with observa-
tions is via the mass function of galaxy clusters. The
shape, expected to be exponential plus a power law tail, fits
the prediction remarkably well, to the extent that cluster
masses are well determined. Three techniques are used to
estimate cluster masses: galaxy velocity dispersion and
distribution, hot gas temperature and distribution, and
gravitational lensing maps. The first two methods assume
virial equilibrium. All three methods give consistent re-
sults, to within a factor of 2 in mass. One can compare
the characteristic cluster mass, determined by the fitting
function

dN
dM

∝ M−α exp
(−(M/Mnl)

β
)
, (95)

with the predicted value of Mnl taken from field galaxy
counts and a bias factor that has to be empirically deduced.
Indeed, Mnl corresponds to a typical observed cluster
mass. The normalization of the cluster mass function
depends both on the mean density and σ(M,Z), with
an exponential sensitivity to σ(M,Z). Only five percent
of galaxies are in clusters, which can therefore account
for perhaps one percent of the critical density. Clusters
are therefore rare objects, typically 3σ fluctuations. The
number density of clusters is controlled by both the mean
density and σ8, in the combination σ8 �

0.6 ≈ 0.7 ±0.2 . The
scale 8h−1 Mpc, corresponding to unit amplitude of the
optical counts and the mass M8 of a typical cluster, is used
for normalization, and σ(M, 0) = σ8(M8/M)(n+3)/6 where
M8 = 4π(8h−1Mpc)3�ρ̄.
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The galaxy luminosity function
The Press–Schechter formulation can also be used to derive
the galaxy luminosity function, which is described by the
Schechter function

dN
dL

∝ L−α exp(−L/L∗) (96)

where L∗ ≈ 1010L
 and α ≈ 1 to 1.5 depending on the
galaxy selection criterion. There are two ingredients that
must be incorporated in connecting mass to luminosity
in order to obtain a satisfactory comparison of theory
and observation. A characteristic luminosity L∗ must
be derived, and the formation of low mass objects into
luminous objects must be inefficient, since the mass
function tail has slope M−2 whereas the luminosity
function is flatter. The characteristic luminosity follows
from the fact that cooling is efficient only for masses up to
∼ 1012M
. Then, assuming a typical baryon fraction, an
age of ∼ 1011 yr, and a standard mass function for stars,
one derives a characteristic luminosity of ∼ 1010L
.

Angular momentum
As structures grow and collapse in the early universe,
they exert tidal torques on each other, and this provides
each collapsing mass with some angular momentum. This
angular momentum, in turn, is important in determining
the final properties of the disk and elliptical galaxies which
form inside these collapsed structures.

The angular momentum of a collapsing halo can be
expressed as

J =
∫

V
d3xρ̄a3(ax − ax̄)× v (97)

where x̄ is the center of mass for the volume. Using
equation (47), we express v as −aḃ∇-0 where b(τ) =
D/4πGρ̄a3. For convenience we expand ∇-0 in a Taylor
series around the point x:

∇-0 |x = ∇-0 |x̄ + (x − x̄) · ∂
2-0

∂x2
|x̄

= ∇-0 |x̄ + (x − x̄) · T (98)

where Tjl = ∂2-0/∂xj∂xl. Rewriting this, we get

Ji(τ ) = −aḃεijkTjl
∫
V

(xl − x̄l)(xk − x̄k)ρ̄a
3d3x (99)

or
Ji(τ ) = −aḃεijkTjlIlk (100)

where Ilk is the inertial tensor.
We now estimate how Ji scales. Since Ilk scales as

a2 until collapse while Tjl continues to scale as ∇-/a2 ∼
(D/a)/a2 ∼ 1/a2, each structure effectively acquires
angular momentum from its neighbors until collapse.
Since the collapse of a structure occurs when δ ∼ 1,
b ∼ D(τ)/4πGρ̄a3 ∼ 1/4πGρ̄a2 ∼ 1/∇2- from Poisson’s

equation and the relation D(τ) ∝ a, so Tjl scales as
∇2-0 ∼ 1/b. I scales as MR2

0 ∼ MR2/a2. Hence,

Ji(τ ) ∼ − aḃTjlIlk ∼ aḃ
1
b

MR2

a2

∼ ḃ

ȧb

ȧ

a2
M(M/ρ)2/3

∼ �0.6H(�H 2)−2/3M5/3

∼ �−0.07t1/3M5/3. (101)

It is standard to construct a dimensionless quantity which
characterizes the angular momentum that each collapsed
mass has acquired via tidal torques. This quantity is called
the dimensionless angular momentum λ, and it can be
expressed as

λ = |J ||E|1/2

GM5/2
. (102)

Noting that |E| ∼ M2/R ∼ M2(ρ/M)1/3 ∼ M5/3(�H)1/3 ∼
�1/3M5/3t−2/3, we see that λ ∼ |J ||E|1/2M−5/2 ∼
�−0.07t1/3M5/3�1/6t−1/3M5/6M−5/2 ∼ �0.1. Therefore, the
distribution of dimensionless angular momenta λ is
essentially independent of a halo’s mass, collapse time,
or even the basic world model. N -body simulations
(Warren et al 1992, Cole and Lacey 1996, Catelan and
Theuns 1996) and analytical treatments (Steinmetz and
Bartelmann 1995) find a distribution which is well fitted
by the expression

p(λ) = 1√
2πσλ

exp
[
− ln(λ/λ̄)2

2σ 2
λ

]
dλ
λ

(103)

where λ̄ = 0.05 and σλ = 0.5.

Disk formation
Disk galaxies make up the dominant component of
the local galaxy census. Disk galaxies are known to
have exponential profiles (I (r) ∝ exp(−r/rd)), to have
significant fractions of dust and stars, to still be undergoing
some STAR FORMATION, and to be rotationally supported.
They are extremely flattened objects and can appear very
elongated if viewed edge-on. They also frequently have
long bars and spiral structures. It is because of this latter
feature that these galaxies are often called SPIRAL GALAXIES.

Most of the global disk properties, e.g., mass,
luminosity, size, and metallicity, define a two-dimensional
manifold with little scatter about that manifold. It is more
well-known in terms of its two-dimensional projections,
in particular, the well-known TULLY–FISHER RELATION between
luminosity and circular velocity. There are two main views
on this tight relationship: one in which these processes
as consequences of self-regulating mechanisms for star
formation in disks (e.g. Silk 1997) and one in which this is
simply the consequence of the cosmological equivalence
of mass and circular velocity (e.g. Mo et al 1998).

In the past, disk galaxies were thought to have
surface brightnesses tightly distributed around 21.65
bJ mag/arcsec2 (Freeman 1970). Shortly after this claim
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was made, arguments were made that there was a strong
selection bias against low surface brightness galaxies and
in reality the spread in surface brightness extended to
much lower values (Disney 1976). Recently, there have
been a large number of efforts to quantify the bivariate
luminosity–surface brightness distribution (de Jong 1996,
McGaugh 1996, Dalcanton et al 1997, Sprayberry et al 1997,
de Jong and Lacey 1999). While the results are somewhat
different in terms of their details, they suggest that the
surface brightness distribution of galaxies peaks around
22 bJ mag/arcsec2 with a spread of ∼ 1 − 1.5 mag/arcsec2.
The luminosity function of spiral galaxies is also nicely
described by the Schechter function.

The typical values of the dimensionless angular
momentum of collapsed halos (∼ 0.05) are considerably
smaller than that of the largely flattened centrifugally-
supported disk galaxies we observe in our universe
today (∼ 0.4 − 0.5), so considerable dissipation must
occur to produce these disks. Without the presence of
dissipationless dark matter, the collapse would proceed
in such a way that the total angular momentum J and
the total mass m would be conserved, but the energy
would scale as 1/R where R is the collapse factor, so that
λ ∝ JE1/2M−5/2 ∝ 1/

√
R. The disk would then need

to collapse by a factor of (0.5/0.05)2 ∼ 100 to obtain its
observed dimensionless angular momenta, and this would
take longer than the age of the universe for a 10-kpc disk!
However, if the gas cloud collapses inside a dark matter
halo, for which it represents only a fraction f of the mass,
then the angular momentum J and mass M would scale
by a factor f and the energy E would scale by a factor
f 2, so that λ ∝ JE1/2M−5/2 ∝ 1/(f 1/2R1/2). For a typical
estimate of the baryon fraction, f ∼ 0.1, the gas cloud
would then only need to collapse by a factor of 10, easily
accommodated in current theories.

Despite the simplicity of this picture, a significant
portion of the available gas cools to form GALAXIES AT HIGH

REDSHIFT. Detailed simulations which follow the evolution
and merging of these galaxies into larger and larger
systems produce disks whose sizes are much smaller than
those observed (Steinmetz and Navarro 1999) because of
substantial angular momentum transfer from the baryons
to their dissipationless halos.

Feedback
A nonnegligible fraction of stars end their lives as
SUPERNOVAE, injecting much of this energy into the ambient
gaseous medium. This energy serves to heat the gas, either
expelling it from the star-forming environment or making
it too hot to be conducive to star formation. Hence, the
formation of stars serves to suppress further star formation
and hereby regulates itself. This process is quite logically
called feedback. The presence of feedback, particularly
in disk galaxies, explains why the conversion of gas into
stars frequently requires ten to hundreds of dynamical
time scales (∼ 1010 yr) instead of just several dynamical
time scales (∼ 108 yr).

Feedback also provides the preferred explanation for
the flattening of the luminosity function relative to the

mass function at low masses (see the section above on
galaxy luminosity function). DWARF GALAXY potential wells
are shallow, and interstellar gas is readily energized above
the escape velocity and therefore blown out in a galactic
wind. Evidence for galactic winds is commonly found for
STARBURST GALAXIES, often of relatively low mass.

Elliptical galaxy formation
Ellipticals make up the other principal component of the
local galaxy census. Ellipticals possess elliptical isophotes
with projected ellipticities ε = a/b (a being the major axis
and b the minor) ranging from 0 to 0.7, the former being
denoted an E0 and the latter an E7. Low redshift ellipticals
possess an abundance of low-mass stars and are therefore
very red. The lack of short-lived blue stars is generally
taken as an indication that these galaxies are very old and
have not formed stars for at least 5–10 Gyr. Like spirals, the
luminosity function for ellipticals can also be described by
a Schechter function, but with a much shallower faint-end
slope (Bromley et al 1998, Folkes et al 1999). Unlike spirals,
ellipticals are predominantly found in dense regions, i.e.,
galaxy clusters (Dressler 1980).

Ellipticals are known to have approximately de
Vaucouleurs surface brightness profiles:

I (r) ∝ exp(−7.67(r/re)
1/4) (104)

where r is the radius and re is the half-light radius. To
higher order, the surface brightness profiles of ellipticals
show an important dichotomy. Some ellipticals, known
as disky ellipticals, appear to have power-law profiles all
the way into their center, and other ellipticals, known as
boxy ellipticals, exhibit a sharp break from this power-law
at some radius near the center.

Like spirals, the global structural properties of
ellipticals are known to populate a two-dimensional
manifold, commonly known as the fundamental plane.
These are known according to various names: the Faber–
Jackson (Faber and Jackson 1976) relationship (L ∝
σ 4), the Kormendy luminosity–radius (Kormendy 1977)
relationship, and theDn-σ (Dressler et al 1987) relationship.
It has largely been agreed that the fundamental plane
is essentially a consequence of the virial theorem and
a relatively homologous formation scenario where the
mass-to-light ratio varies as a small power of the mass
(M/L ∝ M1/6).

There are two prevailing scenarios for the formation
of elliptical galaxies: one in which ellipticals formed as
the result of mergers from spiral galaxies and one in
which ellipticals formed at high redshift from monolithic
collapse. We begin by presenting the monolithic collapse
scenario.

Monolithic collapse
One possible mechanism for the formation of elliptical
galaxies is the early formation of stars from the gas
collapsing onto the center of a dark halo. Early collapse
and fragmentation into stars prior to the collapse of
the halo can constitute the core of the elliptical while
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stars formed from the secondary gas infall can constitute
the shallower wings. An examination of the velocity-
dispersion rotational-rate relationship demonstrates that
ellipticals are essentially pressure-supported and that
rotational flattening is not important in imparting
ellipticity to these galaxies. In fact, detailed comparisons
show that the dimensionless angular momenta of slow-
rotating ellipticals seems to be no larger 0.05. In order to
obtain the typical massM (∼ 1011M
), radiusR (∼ 10 kpc),
and angular momentum without recourse to dissipation,
it would be necessary for the halo to collapse at redshifts
beyond 10. On the other hand, with dissipation, one could
easily obtain galaxies of the desired mass and radius, but
the dimensional angular momentum would be too large
(unless the initial angular momentum for the halo just
happened to be particularly small), and the galaxy would
resemble a disk.

Merger-based origin
Another mechanism for the formation of ellipticals
is through the mergers of spiral galaxies. This
mechanism provides a natural way of resolving the
angular momentum problem, the crucial point being that
since the spin angular momenta are randomly oriented
with respect to each other, the resultant spin angular
momentum for the formed elliptical can be considerably
smaller than the spin angular momentum of the colliding
disks. There are a number of other attractive features
to this scenario. First, there are numerous examples of
disk galaxies merging to form objects with de Vaucouleurs
profiles in the local universe (Schweizer 1982, 1986), and
it is quite conceivable that mergers were more frequent
in the past. Secondly, nearly half of elliptical galaxies
(Malin and Carter 1983, Schweizer and Ford 1984) possess
features, such as shells or other sharp features, indicative
of mergers or an otherwise violent formation. Thirdly,
detailed N -body simulations of collisions between disk
galaxies embedded in dark halos produce galaxies with
de Vaucouleur profiles similar to those found in nearby
ellipticals. Fourth, the GLOBULAR CLUSTER populations
around ellipticals have bimodal metallicity distributions,
indicative of a multi-stage formation scenario (Ashman
and Zepf 1992, Zepf and Ashman 1993). All these features
point toward the conclusion that at least some ellipticals
formed by merging.

Before discussing the relative merits of the two
formation scenarios for ellipticals, it is interesting to
look at several of the difficulties which only arise in
the merging scenario because of the close relationship
between ellipticals and their progenitors (spirals). First,
the energy per particle and phase space density are higher
at the centers of ellipticals than any observed spiral, and
therefore the merging process must be accompanied by
a great deal of gas dissipation and cooling both to form a
much deeper central potential and to obtain the high phase
space density observed there if we presume this scenario is
correct. In fact, nuclear starbursts are frequently observed
to accompany such mergers (Schweizer 1990). Second, the

number of globular clusters (∼ 104–105M
 compact star
clusters) per unit luminosity for ellipticals is typically 4–10
times larger than that for spirals (van den Bergh 1990), so
disk-disk mergers must result in the formation of a large
number of globular clusters if we presume this scenario
is correct. Finally, while ellipticals might be expected to
show relative alpha-to-iron abundances typical of spirals,
ellipticals contain significantly larger abundances of alpha
elements than iron elements, so a substantial fraction of the
stars present in ellipticals must have formed in the merger
events between two spiral galaxies.

A comparative evaluation
The principal observational differences between the
monolithic collapse and merger scenarios for elliptical
formation concern their predictions for the formation
history of ellipticals. Monolithic scenarios tend to form
elliptical galaxies at very high redshifts (z > 3) while
the elliptical population builds up more gradually in
hierarchical scenarios.

Consequently, the merger scenarios, with their more
diverse and contemporary formation histories, show
more scatter in both the colour-magnitude relationship
and the fundamental plane than monolithic collapse
scenarios. Observationally speaking, ellipticals show
a high degree of uniformity both in their small color-
magnitude scatter, i.e. σ(U − V ) = 0.15 (Bower et al
1992) and their tightness around the fundamental plane
(Renzini and Ciotti 1993). This observed tightness about
the fundamental plane extends to z ∼ 1 (Aragon-
Salamanca et al 1993, Stanford et al 1998). The observed
tightness supports a monolithic collapse scenario where
ellipticals form early and somewhat coevally. Of course, in
hierarchical scenarios, most galaxies assemble quite early
(z ∼ 2) in the rich clusters, where the most compelling
examples of tight fundamental planes are observed, so
apparent difficulties with this scenario are not as strong
as they first might seem (Kauffmann and Charlot 1998a).

Due to the different formation times for ellipticals,
these scenarios also yield remarkably different predictions
for the evolution in the number density of early-type
galaxies as a function of redshift. While there has been
an increasing number of studies reporting a devolution in
the number and luminosity of ellipticals at high redshift
relative to that found in the local universe (Kauffmann and
Charlot 1998b, Kauffmann et al 1996, Zepf 1997, Barger
et al 1999, Menanteau et al 1999) as would be expected
in a hierarchical scenario where their formation is more
gradual, these results remain somewhat controversial
(Broadhurst and Bouwens 1999, de Propris et al 2000).

Another important difference between these scenar-
ios is the star formation rates they predict at high red-
shift. In the hierarchical scenario, galaxies start out small
and slowly build up to the massive entities we observe in
the universe today. Clearly, we do not expect large star
formation rates here at early times except possibly when
two galaxies merge. On the other hand, in the monolithic
scenario, ellipticals need to undergo huge star formation
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rates (∼ 100M
/yr) to form the typical 1011 M
 stars ob-
served in nearby giant elliptical galaxies at high redshift
since there is only a period of ∼ 109 yr available. In fact,
very few galaxies with these huge star formation rates
(∼ 100M
/yr) have been found in either emission-line
searches or Lyman-dropout searches at moderate redshifts
(1 < z < 5), pointing to either a high redshift of formation
or dust-enshrouding. Recently, however, SCUBA results
and subsequent follow-up work have revealed a popu-
lation of ultraluminous infrared galaxies at moderate red-
shifts with high enough star formation rates (∼ 100M
/yr)
to match those needed in a monolithic collapse scenario.
Nevertheless, the exact nature of this population, its num-
ber density, and its relevance remain unclear.

Bulges
Many spiral galaxies feature a bulge, or a spheroid, at their
centers. Spheroids resemble elliptical galaxies in many
important respects including their overall appearance and
placement in the fundamental plane. This suggests that
bulges are nothing but elliptical galaxies upon which gas
has later accreted. Note, however, that somewhat contrary
to ellipticals, in particular ellipticals with boxy isophotes,
is the presence of considerable rotational flattening in
many bulges (Davies et al 1983, Davies 1987). This is in
agreement with what one might expect from dissipational
collapse and, in particular, from the formation of bulges
via disk instabilities (van den Bosch 1998).

Summary
While there are many things we do not understand
about galaxy formation, many pieces of the picture
now seem to be clear. Galaxies seem to form in
a homogeneous, isotropic universe that is expanding
according to Friedmann’s equations. Inflation, though
not unique, appears to be a relatively successful way of
producing the scale-free spectrum of density fluctuations
out of which galaxies have formed. Growth of the
fluctuations can be followed initially with linear growth
theory and later using a spherical collapse model. Press–
Schechter theory provides a relatively successful way of
putting these ingredients together to predict the mass
spectrum of collapsed objects. The relative magnitudes
of the cooling and dynamical time scales are important for
determining the mass range of galaxies, galaxies forming
when the cooling time is smaller than the dynamical time.
Disk galaxies form from the cooling of gas onto the centers
of collapsed halos, the gas settling into a disk supported
by its angular momentum. Elliptical galaxies, on the
other hand, seem to form by disk–disk mergers or by gas
cooling within a halo of low intrinsic angular momentum
(monolithic collapse).

Many important questions remain. For example,
what is the relative importance of different mechanisms for
the formation of both ellipticals and bulges? How do the
sizes, luminosities, star formation rates, number densities,
and metallicities of various galaxy types evolve over the
history of the universe? What mechanisms are responsible

for the tight correlation between the global properties
of ellipticals and spirals? While theoretical simulations
are becoming increasingly sophisticated, the inherent
nonlinearity of galaxy formation processes make the role
of new observations tantamount. To give the reader a taste
of the improvements we will see in the next ten years in
probing galaxy formation in the most remote regions of the
universe, in figure 2 we have included some simulations
for a hierarchical merging model using two current
generation instruments (WFPC2 and NICMOS) and two
future generation instruments (ACS and NGST). The
obvious increase in depth will clearly bring our already
moderately mature understanding of galaxy formation
further into focus.
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Figure 2. A simulation of HDF-depth (∼ 30 orbits) exposure over a 7′ × 7′ field of view for WFPC2 (a), NICMOS (b), ACS (c) and NGST
(d). WFPC2 and NICMOS are instruments currently on the Hubble Space Telescope. ACS is an instrument that will be placed on the
Hubble Space Telescope in 2001, and NGST is a completely new space telescope, which will be launched in ∼ 2007. A hierarchical
merging model was used as the model inputs for the simulation (see Bouwens and Silk 1999 for details). 5 µm, 3 µm and 1 µm
wavelengths are assumed for the RGB channels in the false-colour NGST image while for the NICMOS image, the K (2.2 µm), H
(1.6 µm) and J (1.2 µm) bands are assumed. This figure is reproduced as Color Plate 18.

Kauffmann G and Charlot S 1998a Mon. Not. R. Astron. Soc.
294 705+

Kauffmann G and Charlot S 1998b Mon. Not. R. Astron. Soc.
297 L23

Kauffmann G, Charlot S and White S D M 1996 Mon. Not.
R. Astron. Soc. 283 L117

Kormendy J 1977 Astrophys. J. 218 333
Malin D F and Carter D 1983 Astrophys. J. 274 534
McGaugh S S 1996 Mon. Not. R. Astron. Soc. 280 337
Menanteau F, Ellis R, Abraham R, Barger A and Cowie L

1999 Mon. Not. R. Astron. Soc. 309 208
Mo H J, Mao S and White S D M 1998 Mon. Not. R. Astron.

Soc. 295 319
Moore B, Quinn T, Governato F, Stadel J and Lake G 1999

Mon. Not. R. Astron. Soc. 310 1147
Navarro J F, Frenk C S and White S D M 1997 Astrophys. J.

490 493+
Peacock J A 1997 Mon. Not. R. Astron. Soc. 284 885

Peebles P 1980 The Large-Scale Structure of the Universe
(Princeton, NJ: Princeton University Press)

Press W H and Schechter P 1974 Astrophys. J. 187 425
Rees M J and Ostriker J P 1977 Mon. Not. R. Astron. Soc. 179

541
Renzini A and Ciotti L 1993 Astrophys. J. 416 L49
Schweizer F 1982 Astrophys. J. 252 455
Schweizer F 1986 Science 231 227
Schweizer F 1990 Dynamics and Interactions of Galaxies ed

R Wielen (Berlin: Springer)
Schweizer F and Ford W K 1984 Bull. Astron. Astrophys.

Soc. 16 889+
Silk J 1977 Astrophys. J. 211 638
Silk J 1997 Astrophys. J. 481 703+
Sprayberry D, Impey C D, Irwin M J and Bothun G D 1997

Astrophys. J. 482 104+
Stanford S A, Eisenhardt P R and Dickinson M 1998

Astrophys. J. 492 461+

Copyright © Nature Publishing Group 2001
Brunel Road, Houndmills, Basingstoke, Hampshire, RG21 6XS, UK Registered No. 785998
and Institute of Physics Publishing 2001
Dirac House, Temple Back, Bristol, BS1 6BE, UK 14



Galaxy Formation E N C Y C L O P E D I A O F A S T R O N O M Y AN D A S T R O P H Y S I C S

Steinmetz M and Bartelmann M 1995 Mon. Not. R. Astron.
Soc. 272 570

Steinmetz M and Navarro J F 1999 Astrophys. J. 513 555
van den Bergh S 1990 Dynamics and Interactions of Galaxies

ed R Wielen (Berlin: Springer)
van den Bosch F C 1998 Astrophys. J. 507 601
Warren M S, Quinn P J, Salmon J K and Zurek W H 1992

Astrophys. J. 399 405
Zel’dovich Y B 1970 Astron. Astrophys. 5 84+
Zepf S E 1997 Nature 390 377+
Zepf S E and Ashman K M 1993 Mon. Not. R. Astron. Soc.

264 611+

Joseph Silk and Rychard Bouwens

Copyright © Nature Publishing Group 2001
Brunel Road, Houndmills, Basingstoke, Hampshire, RG21 6XS, UK Registered No. 785998
and Institute of Physics Publishing 2001
Dirac House, Temple Back, Bristol, BS1 6BE, UK 15


