
Part III

Stellar Orbits

Introduction to Orbits

Usual approach to modelling galaxies is to look for a way of combining a realistic potential with
a distribution of stars following possible orbits within the potential.
Requirement is that the distribution of stars (+dark matter etc) self-consistently provides the
mass density distribution that gives rise to the potential we considered in the first place.
The motions of stars (and gas) can tell us where the mass is within galaxies, revealing dark
matter and black holes in the centre of galaxies (Sgr A* in our own Galaxy).
Galaxies contain a lot of stars. The gravitational potential within a galaxy consists of a smooth
(large scale) component and the deep potential well around individual stars.
We will consider the nature of orbits in potential models of the kind discussed earlier.

Figure 3.1: Left: A near infrared image of the Galactic Centre region around the central black
hole Sgr A*, showing the high density of stars in the central star cluster. Right: By observing
this region for many years we can directly see the orbits of the stars. The stars with the most
elliptical orbits that pass, close to the black hole, can have velocities of up to ∼ 8000 km s−1.
The mass of the black hole is estimated to be ∼ 4.3×106M�, assuming a distance to the Galactic
Centre of 8.3 kpc. (Figures from Gillessen et al. 2008).

Integrals of Motion: I(x, v)

The motion of any particle can be described by its location in phase space, which in turn is
given by the six quantities x(t),v(t).
For example; x, y, z and vx, vy, vz etc
An Integral of Motion is a function of phase space coordinates that remains constant along
any orbit.
Consider the motion of a star in a static (time-independent) potential.
In this case, the energy per unit mass (Φ + 1

2v
2) is an integral of motion.
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For a star moving in a spherically symmetric potential, the energy and all the components of
the angular momentum vector are integrals of motion.
On the other hand, in an axisymmetric potential, only the component of the angular momentum
along the axis of symmetry is an integral of motion.

Orbital Motion

We will work in spherical (r, θ.φ) coordinates.
Consider this plane of motion to be the (r, θ) plane and will ignore any variation in φ component.
In spherical polar coordinates, the position r is given by

r = r r̂ + θ θ̂ + φ φ̂ (3.1)

The velocity v will be

v = ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂ (3.2)

Differentiating again, we get the acceleration a

a = (r̈ − rθ̇2 − r sin2 θφ̇2)r̂ + (2ṙθ̇ + rθ̈ − 1
2
r sin 2θφ̇2)θ̂ + (. . .)φ̂ (3.3)

Remember, we shall only deal with motion in the (r, θ) plane.
As φ̇ = 0, in the central force problem the equations of motion are

r̈ − rθ̇2 = F (r)/m = f(r), (3.4)

2ṙθ̇ + rθ̈ = 0 (3.5)

where m is the mass of the particle and F (r) the radial force.
Multiplying eqn. (3.5) by r on both sides, and integrating with respect to t, we get the familiar
integral of motion

r2θ̇ = constant (= L/m), (3.6)

where L is the (conserved) angular momentum.
From this, it also follows that the area swept out by the line joining the two bodies per unit
time, given by 1

2r
2θ̇, is conserved (c.f. Kepler’s 2nd law).

Note that this result holds for all central forces, not just the r−2 case, as in the Kepler problem.
Substitute eqn. (3.6) into eqn. (3.4) to yield an equation involving r and its derivatives only:

mr̈ − L2

mr3
= F (r). (3.7)

This is the same equation as for a 1-D problem in which a particle of mass m is subject to a
force:

F ′(r) = F (r) +
L2

mr3
. (3.8)
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The additional term in eqn. (3.8) becomes clearer if written as:

L2

mr3
= mrθ̇2 =

mv2
θ

r
, (3.9)

the familiar centrifugal force.
The corresponding potential (called the effective potential) is given by

V ′(r) = V (r) +
1
2
L2

mr2
. (3.10)

Furthermore, the energy conservation relation implies that the total energy

E = V ′(r) +
1
2
mṙ2 = V (r) +

1
2
L2

mr2
+

1
2
mṙ2 (3.11)

is constant.

The Inverse-Square Central Force

For an inverse-square central force, e.g. gravitation due to a central point mass,

F (r) = − k

r2
, V (r) = −k

r
, (3.12)

and the corresponding effective potential is

V ′ (r) = −k
r

+
L2

2mr2
. (3.13)

This quantity is plotted in Fig. (3.2) as a function of r, where the two dashed lines represent the
first and second terms on the right-hand side respectively, and the solid line is the sum V ′(r).

1. Consider the motion of a particle with energy E1, such that E1 � 0.

If r < r1, then V ′ > E1, and KE (1
2mṙ

2 in eqn. (3.11)) will have to be negative. This is
not possible since it involves the square of the velocity.

This means that a star of energy E1 can never come closer than r1 to the centre.

Since the high positive value of E1 is due to the angular momentum L, it follows that in
a two-body system with substantial angular momentum, neither of the particles can pass
through the centre in their orbit.

For E1 > 0 – hyperbolic orbit. As r →∞ KE is still positive. Unbound orbit.

2. E2 = 0 we have a parabolic orbit.

3. For a particle with energy E3 < 0, in addition to a lower bound r2, there is also a maximum
value r3 that cannot be exceeded with positive kinetic energy.

Stars with this energy will be bounded, their orbit always lying between r2 < r < r3 (i.e.
elliptical orbits).

3



Figure 3.2: The equivalent one-dimensional “effective” potential for an attractive inverse-square
central force.

4. Energy E4 is located at the minimum of the effective potential V ′. These two bounds
coincide, which means that motion is possible at only one value of r (i.e. circular orbit).

This occurs when F ′ is zero, i.e. when F (r) = −mrθ̇2.

This is the familiar case where the applied force is equal and opposite to the “reversed
effective force” of centripetal acceleration.

5. Finally a star with E < E4 cannot have a feasible orbit, and will free-fall into the centre.

Orbits in Spherically Symmetric Potentials: Examples

The basic set of the equations of motion are eqns. (3.4-3.6).
Writing the specific angular momentum as ` = L/m = r2θ̇ = constant, and the acceleration as
f = F (r)/m, eqn. (3.4) becomes

f =
`2

r2
d

dθ

(
1
r2
dr

dθ

)
− `2

r3
. (3.14)

Putting u = 1/r, one obtains the equation

d2u

dθ2
+ u = − f

`2u2
. (3.15)

Solutions to this equation can be of two types:

1. Unbound orbits, where as time progresses, u→ 0 (or r →∞).

We are not interested in such orbits, since they do not constitute galaxies.

2. Bound orbits are such that r (and u) oscillate with time between definite bounds.
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Multiplying eqn. (3.15) by du/dθ and integrating, we get the energy equation(
du

dθ

)2

+
2Φ
`2

+ u2 =
2E
`2

(3.16)

where the constant of integration has been written on the right-hand side in terms of the total
energy per unit mass E and specific angular momentum `.
Remember that

f(r) = −dΦ(r)
dr

= u2dΦ(u)
du

(3.17)

For the bound orbits, at the limits of u, the quantity du/dθ vanishes, so the two extremes are
given by the roots of the quadratic equation

u2 +
2 [Φ(u)− E]

`2
= 0, (3.18)

between which the star will oscillate.
The inner radius r1 = 1/u1 is called the pericentre, and the outer radius r2 = 1/u2 the apocentre.

Radial and Azimuthal Periods

The energy equation (eqn. 3.16) can be rewritten as

E = Φ +
1
2
ṙ2 +

1
2

(rθ̇)2, (3.19)

θ̇ can be eliminated using eqn. (3.6), giving

ṙ =
dr

dt
= ±

√
2(E − Φ)− `2

r2
. (3.20)

The ± signs indicate that there are two cases where the star alternately moves towards the
centre and away.
From eqn. (3.18) you can verify that ṙ = 0 at the pericentre and apocentre of the orbit.
The radial period is the time spent in travelling from pericentre to apocentre and back to
pericentre,

Tr = 2
∫ r2

r1

dr√
2(E − Φ)− `2/r2

. (3.21)

Likewise the azimuthal period can be defined as the time taken for the star to go through a
whole cycle for the other coordinate (δθ = 2π) in the plane of the orbit.
For a Kepler orbit, for instance, this ratio Tθ/Tr = 1
Consequently, the planet, travelling around the Sun, goes over and over the same elliptical orbit
as a result.
The ratio of the two periods Tθ/Tr is in general not a rational number.
Consequently, the typical orbit of a star in a spherically symmetric potential will be a rosette
bound between two concentric circles of radius r1 and r2.
The star will pass through every point between the two circles, given enough time.
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Clearly these orbits, which do not pass through the centre, cannot be the only constituents of
galaxies, which do not look like doughnuts.
However, they could easily make up the disks of spiral galaxies. We will look at other kinds of
orbits in our discussion of axisymmetric potentials later on.

Figure 3.3: The orbit of a star in the potential of the Milky way, given by a spherically symmetric
potential that produces a flat rotation curve. A star starts off from the point at x = 8 kpc,
y = 0 kpc, where the Sun is now, with velocity v= (90, 180, 0) km/s. Note, that it moves off to
the right and top since the x and y components of its initial velocity are positive. The left plot
shows its motion over 2 Gyr, and the right one, after 20 Gyr.

The Kepler Orbit

All the mass in the system M is enclosed within the orbit of the star.
The star is a distance r from the centre of attraction.
The potential is spherically symmetric (the same case as for a planet in the Solar system).
The force per unit mass on the star is f(r) = −GM/r2 = −GMu2.
Consequently, eqn. (3.15) can be rewritten as

d2u

dθ2
+ u =

GM

`2
. (3.22)

Since u = 1/r, the solution can be written as,

r(θ) =
a(1− e2)

1 + e cos(θ − θ0)
, (3.23)

where the eccentricity of this conic section orbit is e = C`2/GM .
C being the constant of integration from eqn. (3.22), and the semi-major axis a = `2/GM(1−e2).
For bound orbits, which we are interested in here, the eccentricity e < 1, and r is finite for all
values of the azimuthal angle θ, and is a periodic function in 2π.
These orbits are ellipses with the centre of attraction at one of the foci of the ellipse.
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The pericentre and apocentre lie at r1 = a(1− e) and r2 = a(1 + e).
Most often, instead of expressing the radius r as a function the angle θ, you would want to know
how it behaves with time t.
The bad news is that in general this cannot be written down in closed form in a single equation.
This is usually represented as a set of parametric equations, in terms of an angular parameter
η,

r = a(1− e cos η); t =
Tr
2π

(η − e sin η). (3.24)

The radial and azimuthal periods, as mentioned above, are equal in this case.

Tr = Tθ = 2π

√
a3

GM
. (3.25)

The Spherical Harmonic Oscillator

Consider the spherically symmetric potential

Φ(r) =
1
2
ω2r2 + constant. (3.26)

The corresponding central force is f(r) = −ω2r,
We encountered something similar in the case of a sphere of constant density, where the circular
velocity v2

c (r) ∝ r2.
We need not derive the equation for u in this case.
Simply writing down the solution in Cartesian coordinates (which is possible in this case) would
help us see clearly what is going on.
In Cartesian coordinates, x = r cos θ and y = r sin θ, and the equations of motion in these two
directions reduce to ẍ = −ω2x and ÿ = −ω2y, where ω2 = 4πGρ/3.
These are equations of simple harmonic motion.
The solutions are

x = X cos (ωt+ ε1); y = Y cos (ωt+ ε2). (3.27)

This orbit is elliptical in general (circular if X = Y ), with the centre of attraction at the centre
of the ellipse.
This is one of two cases that yield closed bounded orbits (Bertrand’s theorem). The other is the
inverse square case.
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