

Size of a bl	Schwarzschild radius ack hole
Mass	$R_{S}=3(\frac{M}{M_{\oplus}})$ km
1 Earth mass	2 cm
1 Solar mass	3 km
10 Solar masses	30 km
1 million Solar masses	3 million km ~ 4 x Solar radius!

Wavelength (Å)

QSO MODE FEEDBACK

- · Gas rich major merger
- Inflows trigger BH accretion & starbursts
- Dust/gas clouds obscure AGN
- AGN wind sweeps away gas, quenching SF and BH accretion.

Hernquist (1989) Springel et al. (2005) Hopkins et al. (2006)

AGN FEEDBACK									
		When?	Trigger?	Feeding?	Consequence?				
	Quasar Mode	at early times	gas rich mergers	cold gas	BH growth, sets properties of ellipticals				
	Radio Mode	at late times	BH & hot halo large enough?	hot gas? stellar winds?	suppresses cooling gas, shuts down SF				
A complete picture of galaxy evolution probably needs both									

Final Thoughts

AGN are important for several reasons:

- > They have produced ~10% of all the luminous energy since the Big Bang
- > They are unique laboratories for studying physics under extreme conditions
- > They played a major role in the evolution of the baryonic component of the universe (galaxies and the inter-galactic medium)

