Lecture 10: The death of stars

- The death of low mass stars and formation of white dwarfs
- The late evolution of massive stars
- Supernovae
- Summary of evolutionary pathways

The death of low mass stars

•Ejection of the stellar atmosphere leaves the compact carbon-oxygen core.

•The drastic shrinkage of the star leads to a dramatic drop in luminosity.

•What remains is a white dwarf star, in the lower left portion of the H-R diagram.

White dwarf stars

- The carbon nuclei and electrons in the core of a white dwarf are packed together very tightly: about 1 solar mass in the volume of the Earth.
- One teaspoon of white dwarf matter has a mass of about 5 tons. Electron degeneracy pressure prevents the white dwarf from collapsing under its own weight.
- Electron degeneracy pressure occurs because, quantum mechanically, electrons do not like to be too close to each other (being fermions).
- Nonetheless, if the mass exceeds 1.4 solar masses, gravity will overcome electron degeneracy pressure and the core will contract, or even collapse catastrophically resulting in a supernova explosion.

The evolution of white dwarfs 0.50 M_☉ _ 0.25 M_☉ 1 -Mai 0.80 M (° T) (10-2 −. sequence 1.00 M_-As a white dwarf ages, its radius stays the same but its luminosity and surface temperature decrease: Its 10-4 evolutionary track moves down and to the right on the H-R diagram. 100,000 30,000 10,000 3000 Surface temperature (K)

The late evolution of high mass stars

- In stars with M>8M_☉, electron degeneracy cannot stop the C-O core from contracting further and heating up.
- This leads to further stages of nuclear burning, including the fusion of carbon, neon, oxygen and silicon.
- These subsequent stages start in the core, and later switch to shells, just like H and He burning.
- Each stage proceeds more rapidly than the last, due to faster reaction rates, and diminishing energy returns.

table 22-1 Evolutionary Stages of a 25-M _o Star			
Stage	Core temperature (K)	Core density (kg/m ³)	Duration of stage
Hydrogen fusion	4×10^7	5×10^{3}	7×10^6 years
Helium fusion	2×10^8	7×10^5	7×10^5 years
Carbon fusion	6×10^8	2×10^{8}	600 years
Neon fusion	1.2×10^9	4×10^9	1 year
Oxygen fusion	1.5×10^9	1010	6 months
Silicon fusion	2.7×10^9	3×10^{10}	1 day
Core collapse	5.4×10^9	3×10^{12}	1/4 second
Core bounce	2.3×10^{10}	4×10^{15}	milliseconds
Explosive (supernova)	about 10 ⁹	varies	10 seconds

Supernovae

Core collapse releases large amounts of gravitational energy, $E \sim GM^2/R_{final}$

This powers many endothermic nuclear reactions and generates a huge flux of neutrinos

 When the core reaches nuclear densities, the nucleons become degenerate, and neutrinos are also unable to escape easily

This generates a huge increase in pressure, and the core collapse is stopped abruptly in a "bounce"

This ejects the outer layers of the star at very high velocity, causing a powerful explosion

Star's core spreads outward from the core

Computer simulation showing structure 10 ms after core bounce

- Supernova 1987A in the Large Magellanic Cloud is the closest supernova seen for over 300 years.
- Its peak luminosity of ~10⁸ L_{\odot} was rather low by typical SN standards.

<text>

