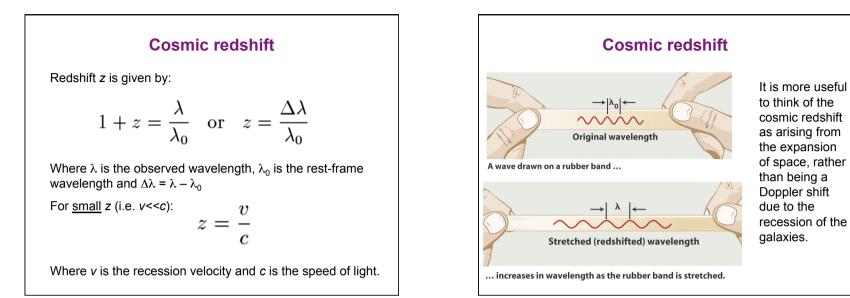

Lecture 14: Cosmology

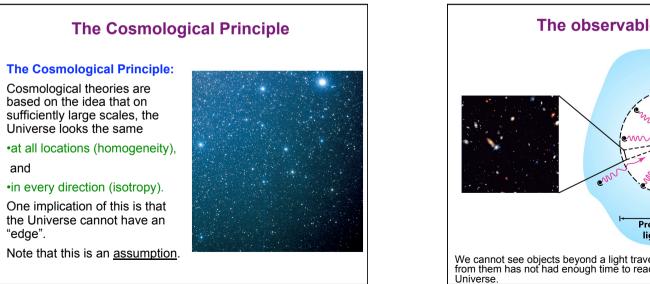
- Olbers' paradox
- Redshift and the expansion of the Universe
- The Cosmological Principle
- Ω_0 and the curvature of space
- · The Big Bang model
 - Primordial nucleosynthesis
 - The Cosmic Microwave Background
- The age and future of the Universe

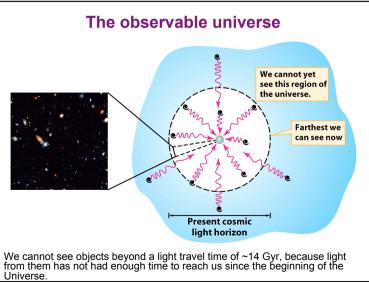
of stars independent of r

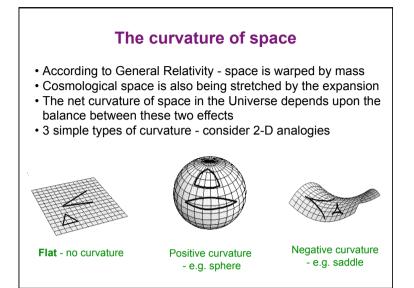
Resolutions of Olbers' paradox Cosmic redshift Light is absorbed by Universe has finite age When a galaxy is receding, light waves travelling to intervening dust us are redshifted - light from stars more than ct_{Uni} distant has not - suggested by Olbers had time to reach us doesn't work: dust would heat up over time until it Universe is expanding You're receding reached the same effective temperature of distant starlight is temperature as the stars that illuminate it · Hubble measured the spectrum redshifted down of nearby galaxies and found the · Universe has finite size - this effect not known spectral lines to be redshifted until 19th century suggested by Kepler Nearb Galay - this works (integral is These last two provide Distar truncated at finite r) the resolution to Olbers' • The more distant the galaxy, - but static finite universe paradox the greater its redshift Quasa would collapse under its

own gravity - i.e. unstable




You're receding


400


500

600 700

The Density Parameter - Ω_0

 Ω_0 is defined as:

 $\Omega_0 = \frac{\rho_0}{\rho_c}$

Where ρ_0 is the current density of the universe and ρ_c is the *critical density* – the density which makes space flat.

$$\rho_c = \frac{3H_0^2}{8\pi G}$$

So:

- Ω₀ < 1 gives negative curvature Open Universe
- Ω₀ = 1 gives a Flat Universe
- $\Omega_0 > 1$ gives positive curvature a finite, **Closed Universe**

The Hot Big Bang model

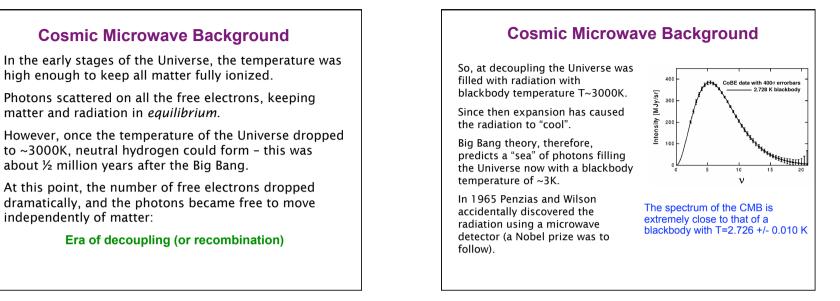
If the universe is expanding, then it follows that by going back in time, we move towards a moment when the universe was infinitely dense.

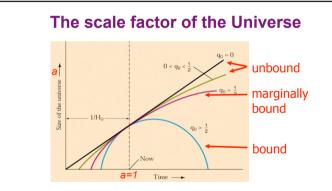
This *singularity*, from which the universe is expanding is the so-called **Big Bang**.

The Big Bang model is a theory for the formation, development and future history of the universe. It is now widely accepted because it explains three very important observational facts:

- 1. The expansion of the Universe
- 2. The relative abundances of light elements
- 3. The cosmic microwave background

Primordial Nucleosynthesis

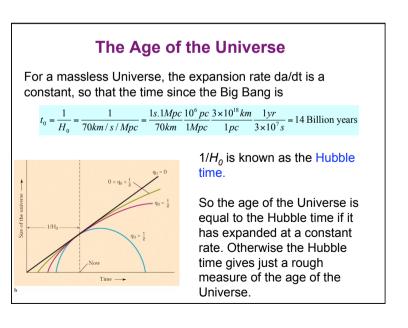

For the first 10-15 minutes after the Big Bang, the temperature of the Universe was very high – high enough to produce light elements from hydrogen by nuclear fusion.

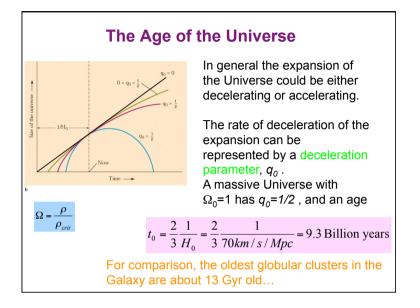

The theory of **primordial nucleosynthesis** combines our understanding of nuclear physics with the Big Bang model, to predict the relative abundances of the light elements:

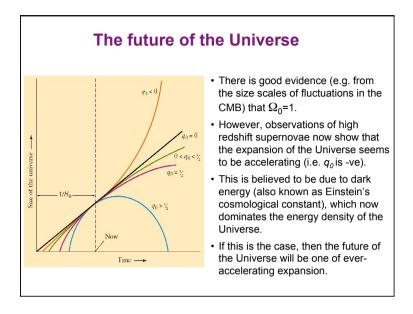
Deuterium ($^{2}_{1}$ H), Helium-3 ($^{3}_{2}$ He), Helium-4 ($^{4}_{2}$ He), Lithium-7 ($^{7}_{3}$ Li)

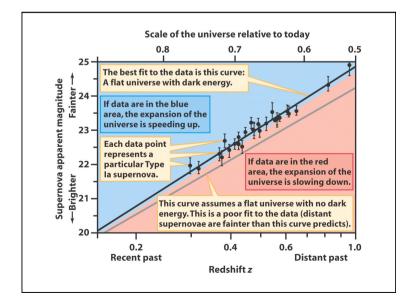
These predictions can be tested by studying metal-poor galaxies (i.e. those where stellar-processing has had very little effect)

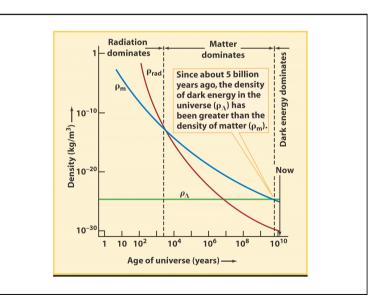
Predictions match observations very well.






From the cosmological principle, the expansion of the Universe must be the same everywhere. It can therefore be represented by the changing value of a scale factor *a*, which is normally defined to be 1 at the present time. For an empty Universe, *da/dt*=const., whilst matter decelerates *a*.


The Hubble parameter H is then just H=(da/dt)/a


 H_0 ("Hubble constant") is the <u>current</u> value of the Hubble parameter.

Quantity		Properties of the Universe Significance	Value*
Hubble consta	nt, H ₀	Present-day expansion rate of the universe	71 ⁺⁴ ₋₃ km/s/Mpc
Density parameter, $\boldsymbol{\Omega}_{\boldsymbol{0}}$		Combined mass density of all forms of matter <i>and</i> energy in the universe, divided by the critical density	1.02 ± 0.02
Matter density parameter, Ω _m		Combined mass density of all forms of matter in the universe, divided by the critical density	0.27 ± 0.04
Density parameter for ordinary matter, Ω_b		Mass density of ordinary atomic matter in the universe, divided by the critical density	0.044 ± 0.004
Dark energy density parameter, Ω_{Λ}		Mass density of dark energy in the universe, divided by the critical density	0.73 ± 0.04
Age of the universe, T_0		Elapsed time from the Big Bang to the present day	$(1.37 \pm 0.02) \times 10^{10}$ years
Age of the universe at the time of recombination		Elapsed time from the Big Bang to when the universe became transparent, releasing the cosmic background radiation	$(3.79 \ _{-0.07}^{+0.08}$) $\times \ 10^{5} \ years$
Redshift z at the time of recombination		Since the cosmic background radiation was released, the universe has expanded by a factor $1+z$	1089 ± 1
*Values are fr	om the first y	ear of WMAP data. (NASA/WMAP Science Team)	