Lecture 7: The basic physical properties of a star

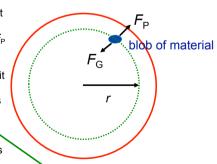
- Hydrostatic equilibrium and dynamical collapse time
- Global stability, mean temperature and the Virial Theorem
- · Energy generation in stars
- Energy transport

Hydrostatic equilibrium requires a pressure gradient Pressure from gases above the slab Slab of solar material Pressure from gases below the slab

Hydrostatic equilibrium

- · A star is mostly made of hydrogen and helium
- It would collapse under its own gravity were it not for support from internal pressure
- The balance between gravity and an internal pressure gradient is known as hydrostatic equilibrium

Hydrostatic equilibrium


For a stable star, hydrostatic equilibrium must hold throughout the interior.

Consider a blob of material at radius *r* within a star:

- Outward pressure force F_P must balance inward gravitational force F_G
- Equating the force per unit volume due to pressure gradient and gravity gives

$$\frac{dP}{dr} = -\frac{GM(r)\rho}{r^2}$$

where P and ρ are the gas pressure and density at radius r, and M(r) is the mass within this radius.

This is the equation of hydrostatic equilibrium

Dynamical collapse time

magine that the pressure support were suddenly to disappear. How long would it take a star to collapse?

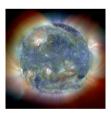
Applying Newton's second law to an element of mass m at the stellar surface (radius R), gives

$$F_G = m \, dv/dt$$
,

O

$$GMm/R^2 = m d^2R/dt^2$$

We can set $d^2R/dt^2 \sim R/t_{\rm dyn}^2$, where $t_{\rm dyn}$ is the dynamical collapse time - a rough measure of the timescale on which the system would collapse. From the equations above

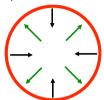

$$t_{\rm dvn} = (R^3/GM)^{1/2}$$

Substituting values for the Sun ($R=7x10^8$ m, $M=2x10^{30}$ kg), gives the startling result....

What is a star?

- The inside of a star must be hot, so that pressure can prevent gravitational collapse
- However, a star is constantly radiating energy, which must be replenished by some energy source
- The conflict between gravity and pressure determines the course of stellar evolution
- One very important consequence of the virial theorem, is that a star satisfying the equation $<\!T\!>= \frac{\eta GM\mu}{3kR}$ cannot cool.

As it cools, it loses pressure support, and shrinks. As *R* decreases it must get *hotter*!



The Virial Theorem

- Hydrostatic equilibrium applies at every point within a static star.
- However, it is also possible to integrate over the whole star, to derive a *global* relationship between gravity and pressure.

$$3\int PdV = -\Omega = \eta \frac{GM^2}{R}$$
 V.T.

where Ω is the total gravitational potential energy of the star (-ve), and η is a number of order unity, which depends on its detailed density profile.

Defining a mean temperature <*T*> for a star, and assuming *P=nkT*: $3\int PdV = 3k < T > \int ndV = 3Nk < T >$ and therefore $< T > = \frac{\eta GM\mu}{3kR}$ This will prove very useful

where μ is the mean mass per particle, μ =M/N.

The Sun's energy supply

• Sun's luminosity = 3.9 x 10²⁶ Watts

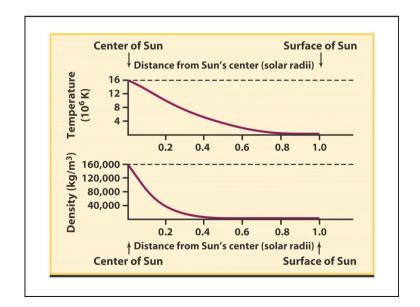
What is the source of this energy?

- Age of sun is 4.5 Gyr, so total energy radiated to date is $E_{tot}{\sim}6x10^{43}\ J$
- Thermal energy?

Total energy available = $3Mk<T>/2\mu$ = $5x10^{34}$ T Joules.

- So the mean temperature would have to have cooled from T>10⁹ K to provide enough energy.
- Not plausible.

The Sun's energy supply


• Gravitational potential energy? $\Omega = -\frac{3}{5}\frac{GM^2}{R} = -2 \times 10^{41} \ J$ (uniform density sphere) (uniform density sphere)

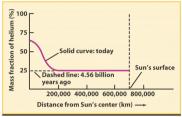
$$\Omega = -\frac{3}{5} \frac{GM^2}{R} = -2 \times 10^{41} \ J$$

With this energy, the sun would last

$$\frac{2 \times 10^{41} J}{3.9 \times 10^{26} J/s} = 1.7 \times 10^7 yr$$

- · Nuclear energy? $4m_H - m_{He} = 0.029m_H = 6 \times 10^{14} J/kg$ $E = m c^2$
- Mass of sun= 2x10 30 kg, so total energy available is $6x10^{14}$ x 2x10 30 ~10 45 J. Compared to the E $_{tot}$ ~6x10 43 J radiated by the sun over its lifetime to date.
- · Promising!

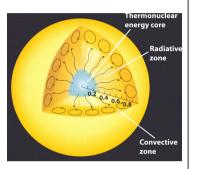

Thermonuclear fusion



- The energy released in a nuclear reaction corresponds to a slight reduction of mass, according to Einstein's equation $E = mc^2$
- Thermonuclear fusion occurs only at very high temperatures; e.g. hydrogen fusion occurs only at temperatures in excess of about 10⁷ K
- In the Sun, fusion occurs only in the dense, hot core
- It converts the most abundant element hydrogen, into helium

Hydrogen fusion occurs via a sequence of thermonuclear reactions with the net effect 4H→He The proton-proton (or pp) chain Two protons (hydrogen nuclei, 1H) collide. The ²H nucleus from the first step Two ³He nuclei collide. One of the protons changes into a neutron (shown collides with a third proton. A different helium isotone with two A helium isotope (³He) is formed in blue), a neutral, nearly massless neutrino (ν), and protons and two neutrons (4He) is a positively charged electron, or positron (e+). and another gamma-ray photon is formed and two protons are released The positron encounters an ordinary electron (e-), annihilating both particles and converting them into gamma-ray photons (γ).

Fusion is depleting H in the solar core



- (a) Hydrogen in the Sun's interior
- (b) Helium in the Sun's interior
- The Sun has been a main-sequence star for about 4.56 Gyr
- It should remain one for about another 7 Gyr, at which point it will run out of hydrogen fuel in its core

Energy transport in the Sun

- Hydrogen fusion takes place in a core extending from the Sun's centre to about 0.25 solar radii
- The core is surrounded by a radiative zone extending to about 0.7 solar radii
 - In this zone, energy travels outward through radiative diffusion
- The radiative zone is surrounded by a rather opaque convective zone of gas at lower temperature and pressure
 - In this zone, energy travels outward primarily through convection

