9. A Cosmological View

9.1 A little cosmology
From observational evidence, we know the universe is
expanding.

Hubble’s Law tells us that the recessional speed of

galaxies 1s proportional to their distance from us.

Here, we aim to develop a simple understanding of how this
expansion varies with time.

We begin with a simple Newtonian description: this will
suffice in order to allow us to develop definitions for some

‘cosmological’ quantities.

Figure 9.01: A 'galaxy' on the surface of an expanding

sphere



Consider Figure 9.01. It shows a small mass m on the surface

of an expanding sphere of radius r.

Let us think of this as being a galaxy on the surface of a sphere

in the expanding universe.

The mass contained in the thin shell on which our mass m lies
expands along with the universe: the mass contained within the

sphere is therefore conserved.

e The radius r is a coordinate distance: it changes with time
as the sphere expands, so strictly speaking we should

write it as (7).

e Now, let us ‘tag’ the location of the surface of the

expanding shell with a co-moving coordinate O.

e Next, we introduce a scale factor, R(f). At any given time
t, any thin shell that we define within our expanding
‘universe’ (e.g., we could consider a second shell within

the shell shown in Figure 9.01) will have the same value



of R(?). It therefore provides us with a time-dependent (but

position invariant) measure of the expansion.

e A complete, time-dependent coordinate for the mass is

then given by r(¥) = GR(?).

e The mass contained within the radius r is just proportional
to °p, where here we take p to be the mean density of the
matter contained within the sphere. For a specific shell,

this will remain constant over time.
» This is just a statement of the conservation of matter.
e For all shells, R*(¢) O(t) remains constant over time.

The total energy of the galaxy is conserved during the

expansion. It is given by:
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where M is the total mass contained within the expanding

sphere.



There are three conditions to consider:

1. If E <O, our ‘universe’ 1s bounded or closed, and the
expansion will eventually come to a halt and be followed

by contraction.

2. If E > 0, the universe is unbounded or open, and the

expansion will continue indefinitely.

3. If E = 0 the universe is flat, and the rate of expansion will
asymptote to zero at an infinite time; the universe will

therefore be infinitely dispersed.

The value of the scale factor at the current epoch, 7, is by

definition unity, i.e., R(#) = 1.



9.1.1 The cosmological redshift
The red shift, z, is defined according to:
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e The spectrum formed by bodies (e.g., galaxies) receding

from us will be red shifted.

* But remember also that the length scale of the universe,

R(?), changes with time.

e So wavelengths will be ‘stretched’ as the universe

enlarges.

* So when we look at very distant objects (on a
cosmological scale), whose radiation was emitted at an
earlier epoch when R(t) was smaller, the spectrum will be
‘stretched’ in wavelength by the time we receive it, i.e., it

will be cosmologically red shifted.
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9.2 Formation of structure in the early universe
Next, we consider the conditions in the early universe that led

to the formation of observable structure.

9.2.1 The density of matter and radiation
First, we investigate how the mass density of matter and
radiation changed as the universe expanded after the Big Bang,

1.e., as the length scale R(¢) increased.

e The mass density varies as:
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* To get the equivalent radiation density, we recall that the
energy density (energy E divided by volume V) of

radiation is just:

1% , (1.06)
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where a 1s the radiation constant. Since E = mc”, we have:
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* We now recall Wien’s Displacement Law for the
wavelength at which the emission given by a Black Body

1S @ maximum, i.e., A = constant.

o The wavelength A, will be stretched by the increase in

R(1). So:
AU R(1)

and then:

TOR@)™

* From Equation 9.05, it follows that:

p, ORM™.  (9.06)

* So, over time, P, decreases faster than p, (see Figure

9.02).



A mass density

Z R(t) and time

Figure 9.02: The relative variation of the matter and
radiation densities in the universe

What are the current values for both densities at the present

epoch (where by definition, R(zy) = 1)?

 For T(t;) = 3 K, we have p, = 6.5 x 107" g cm™.

* The mass density estimated to reside in luminous matter

is of the order of p,,, =5 X 1073 g cm™.

¢ So the current universe is matter dominated.



9.2.2 The epoch of recombination
So, if the universe is now matter dominated, when in the past
were the matter and radiation densities similar? (Prior to this

the universe will have been radiation dominated.)

From Equations 9.04 and 9.06:

pr |:| R(l_)—l

m

e Since the current ratio is = 107>, the two densities must
have been equal when the scale factor R(f) was = 10°

smaller than it is today.

* Remember that the current value, R(#), is 1 by definition,

so the densities were similar when R() = 10™".

 This must have been when the red shift z = 10* (cf.

Equation 9.03).

What was the temperature at this epoch?



Recall from above that:
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With 7(¢y)) = 3 K, we have 7(¢) = 3000 K when the densities

were similar.

* This temperature is approximately equal to the value

above which hydrogen is completely ionised.

* So, after this epoch, electrons and protons combine to

form neutral hydrogen.

Now:
e Plasma is much more opaque to radiation than is neutral

hydrogen.

* So, prior to recombination, matter interacted far more
strongly with radiation than in the current, matter-

dominated universe.



e This has important implications for the formation of

density fluctuations in the young universe



9.2.3 Structure formation
e To form structures of the type observed in the universe,

we require density fluctuations.

e The Jean’s condition (cf. Section 8.3) then determines
whether or not these can give rise to a collapse of matter

to form structures.

Prior to recombination, matter and radiation interact strongly:

* A density perturbation that condenses matter locally will
have a similar effect upon the radiation field: this is an

adiabatic fluctuation.

e These adiabatic fluctuations tend to be damped out by the
flow of radiation from the compressed to the
uncompressed regions, i.e., the radiation field tends to try

to remain ‘smooth’.

* Now, the motion of matter is inhibited by its strong

interaction with the radiation: so if density fluctuations in



the radiation field cannot grow, they will also be unable to

grow in the distribution of matter.

Matter cannot be compressed independently of the

radiation field, so isothermal fluctuations cannot form.

In an isothermal fluctuation, matter is compressed but the
radiation field is not, so that the temperature remains

unchanged.

Recall our discussion in Section 4.3.1 of the conditions

that lead to the collapse of a cloud of matter.

The Virial Theorem tells us that the gravitational
(collapse) term must win out over the kinetic
(support) term in the Virial equation in order to

initiate collapse.

The cloud needs to collapse in an isothermal manner
for this condition to be satisfied. Only when it
becomes dense and opaque does the cloud behave

adiabatically, and this halts the collapse.



* So, after the de-coupling of matter and radiation (i.e., after

recombination) isothermal fluctuations can form.

This means that enhancements of density in matter can grow,

allowing the formation of gravitationally bound structures.
At the epoch of recombination, what is the Jean’s Mass?

Recall that the mass required to initiate spontaneous collapse

(the Jeans Mass) is given by
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where [ 1s the mean weight per particle and my 1s the mass of
the hydrogen atom, 7 is its temperature, and P ( is the initial

density of the cloud.

We know T at recombination, but what about p,? Recall

Equation 9.04:
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We then have:

P _ ARG %
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where P 1s the current mass density. The density at
recombination, when R(f) was roughly 107, is therefore about

10° times larger than the current value.
With o =3 x 107" g cm™, we have My = 10°M, .
e This corresponds to the mass of globular clusters.
* Globular clusters contain very old stellar populations, and

so our analysis suggests that they were the first large

structures to form.



9.3 Some observational cosmology
9.3.1 The Hubble constant and the deceleration parameter
The Hubble constant provides a measure of the rate of

expansion of the universe.

A galaxy at a distance r(¢) will have a recessional velocity

given by:
v(t) =H@®)r@), (9.07)

where H(t) is the Hubble constant. Since the expansion does

not occur at a constant rate, H(¢) varies with time.

If we denote the current time (or epoch) by ¢,, then:

e The current value of the Hubble constant is given by
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* The dimensionless deceleration parameter, g, provides a

measure of the rate of expansion of the universe.



As its name implies, if g > 0, the universe is decelerating

at the epoch when ¢ is determined.

The current value is given by:

=g 1&( =& R(, )H(r) (9.09)

9.3.2 The critical density
If we set £ =0 in Equation 9.01, we can then derive the critical
density above which the universe will be bound and closed. A

flat universe therefore has this density.

We have:
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The mass contained within the sphere of radius OR(?) is just:

M = %pn[a R(z‘)]3 _



If we substitute into the equality and reorganise to make

density the subject of the equation we have:
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We can now use Equation 9.08 to introduce the current value
of the Hubble constant, Hy, so that the equation is now

pertinent to conditions at the current epoch, i.e.,
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Equation 9.10 tells us that if the density at the current epoch,
Po, 1s equal to the critical density O, the universe will be

marginally bound or flat.

The ratio of the observed and critical densities is usually

denoted by:
Q — pO — 87TGIOO
" L. 3[-]02 , (D9.11)

where the ‘m’ denotes that this is the observed fraction of the

critical mass density.



9.3.3 Life histories of simple models of the universe
We now use the arguments and simple equations from above to

detail the life history a few simple universes.

Figure 9.03 shows the expansion of a universe that has p > 0.

R(1)

Decelerating motion

Time

Figure 9.03: The expansion of the universe

* As time passes, the rate of expansion decreases.



* The pictorial representation assumes that the life history
of this universe can be traced back to a Big Bang at = 0.

At that time, the distance scale R(¢) = 0.

» At the current age of the universe, t,, the scale factor is

R(ty) and the Hubble constant is H,,.
e By definition, R(%) = 1.

* The gradient of the curve at the current epoch, t,, gives the

speed of recession dR(t) / dt.

* Since the expanding universe decelerates, its current age

-1
ty<Hy, (R9.12)
For the case of a marginally bound (flat) universe with

E =0, we find that:

flat 2 -1
o =3Ho 013

(See non-assessed Problem Sheet 3.)

Next, we consider how the deceleration parameter varies for

different universes (Figure 9.04)



R(t)

Now

Figure 9.04: Histories of different universes

With reference to the figure:

e [t can be shown readily that:

1
9% =52 (9.14)

A flat universe (with critical density, i.e., E=0; Q,, = 1)

therefore has gy = V2.



* The case with gy = 0 is just that of an empty (p = 0)

universe.

* For 0<¢gy< Y, we have an unbounded universe (E > 0;

Q,, < 1) that will expand forever

* For gy > %2, the universe is bounded (E < 0; Q,, >1) and

will eventually collapse.

Whichever of the above (or other more complicated models)
matches reality, all the models are constrained such that they

must give the current value of the Hubble constant, H,,.

» This fixes the gradient of the expansion curve at the

current epoch.

* In turn, this means that different types of universe that
match this constraint will have different ages (see figure

again).



9.3.4 The cosmological constant
Consider the equation of motion of a ‘galaxy’ of mass m in the

universe.

It is attracted toward the centre of the sphere by the mass

contained within its radius, 1.e.,

LT = o iy = - GM Gm(4n/3)p(t)[20 R
dt lo R(1)] [ R(t)] ,
So that:
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A more detailed treatment (i.e., beyond Newtonian mechanics)

gives the following equation of motion:
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The additional term, A\, is called the cosmological constant.

It has units of s 2.



We now have two terms on the right-hand side of the equation

of motion:

» The first represents the gravitational effect of matter, and

this acts as a deceleration term.

* The second can either be positive or negative, depending
upon the value of A. If A is positive, then it can act as a

cosmic repulsion term.

Its presence in the equation of motion implies the presence of
energy in a universe devoid of matter, i.e., it can be regarded as

being the energy density of a vacuum.

The Cosmological Constant can be thought of as giving rise to

an equivalent density, Q,, such that:

O Tagze (9.16)

Figure 9.05 shows how different values of the constant will

affect the evolution of a flat, critically bound universe.
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Figure 9.05: Flat universes (E = 0) with different
cosmological constants, A

If we allow for the presence of the Cosmological Constant, our
earlier statement that, in a flat universe Q,, = 1, must now be

modified to the requirement:

Q,+Q, =1 (.17

It also modifies Equation 9.14 to:

1
qo—EQm—QA. (9.18)



9.3.6 Current estimates for cosmological parameters

Measuring the distance to, and recessional velocity of,
distant galaxies or other objects allows for a determination

of the Hubble constant H,.

The current best estimate' is Hy =70 km s~ mpc ™.
o This implies that, for a flat universe with A =0,
t"™ = 9.3 Gyr.
o An empty universe (again with A = 0) will have

te"™™ = Hy”"' = 14 Gyr.

But what is A? The key to getting a handle on the values

of Q,, and Q, is to uncover an estimate of g.

Hubble’s Law tells us that the recessional velocity is
proportional to the distance to the observed object.
o If we observe very distant objects, we will be looking
at a much earlier epoch when the rate of expansion
will have differed from more recent epochs (if there

1S a non-zero acceleration or deceleration).

' Mould J. R., et. al., 2000, ApJ, 529, 786



o If we can detect some deviation from the straight-line
of Hubble’s Law for very distant objects, we can

hope to get a handle on the value of g, and in turn

Q,, and Q.

The Supernova Cosmology Project has observed > 40

distant supernovae.

Their data indicate that A > 0. They appear to be
inconsistent with a flat, /A = 0 model, and also do not fit

well an open A = 0 cosmology.

If the results are constrained to a flat cosmology, that has
Q,, + Qa = 1, the best fit gives:

o Q,,=0.28

o Since luminous matter accounts for about 5 per cent

of the critical density, this result implies that dark
matter makes up about 0.28 — 0.05 /0.28 = 82 per
cent of all matter in the universe.

o QA=0.72

o Therefore go =0.28 /2 -0.72 =-0.58

o The universe is accelerating!?



