Dynamics of the Universe

The dynamical equations for a uniform, unbounded universe can be readily derived from a New-
tonian treatment. Since this is so central to cosmology, a derivation of the key equations is
provided below. This closely follows Liddle, who gives a good treatment.

Following the Cosmological Principle, we assume a uniform distribution of matter, and consider

the expansion of a sphere of material of radius z and mass M = %mc?‘p.

In classical physics, Newton’s theorem tells us that surrounding spherical shells of matter do
not affect the dynamics inside the sphere. In General Relativity (which is needed to deal with
distant shells, where the possible curvature of space cannot be ignored) a corresponding result
known as Birkhoff’s theorem has the same effect.

The total energy of a shell of mass m at the edge of the sphere is
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Since the whole Universe is expanding, it is helpful to separate the radius z(¢) of the sphere into
a comoving distance r, and a scale factor a(t) which describes the expansion of the Universe. So

z(t) = ra(t).

(The time coordinate ¢ here, is the cosmic time, which can be agreed on by all comoving observers
— e.g. it could be set by the evolving mean density of the Universe.)

We define r to be the real physical radius at the present epoch (¢ = #y), so that a is dimensionless
and a(ty) = 1.

Warning: Different authors use different systems for defining the scale factor. Since the require-
ment is that ra(t) has to be a real distance, it is possible to make either r or a dimensionless,
and also to use different unit systems. Rowan-Robinson denotes the scale factor by R and gives
it dimensions of length, but then divides it by its current value, Ry, so that our a is his R/Ry.
Also, Rowan-Robinson uses a dimensionless k& (whereas our k has units of length—2), and Rowan-
Robinson’s (k/R%) equals our k. Liddle’s treatment is similar to ours, except that he denotes
the comoving distance as z and the real distance as r. Most authors denote comoving distance
by r (and in fact Liddle switches to this in his chapter A1), so we will follow this practice.

Substituting for z in (1) and dividing through by m, gives
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and rearranging,
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which we write as
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the Friedmann equation. (2)



Here k = —%, and H(t) is the Hubble parameter (its value Hy = H(ty) at the present time
is the Hubble constant). The last term in the Friedmann equation cannot depend on r (since
the first two don’t), hence k£ must be independent of r. Since k = —%, it is also clearly
independent of time (remember that £ is conserved) — so k is actually a fundamental property

of the Universe, and it turns out to be related to the curvature of space in GR.

To solve equation (2) for the evolution of the Universe, we need to know how p evolves with
change in a. Due to mass-energy equivalence (E = mc?), what we need is an energy equation
for the expanding sphere of fluid. So, using
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setting E = mc? = %7‘('0,37'3p02, and considering an adiabatic expansion (dS = 0), we have
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Combining this with the Friedmann equation, we can derive a useful equation for the acceleration
of the expansion. Differentiating (2)
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Substituting for ¢ and dividing by 2a/a,
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and subtract off equation (2) to give
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(Warning: Some authors adopt units such that ¢ = 1 in this equation.)
Note from (4) that P does not help to drive expansion (there are no pressure gradients to do so)

— it actually retards expansion (via work done). This point is important for any understanding
of the effects of the cosmological constant.
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