

Astronomy In The City Gravitational Waves Special

birmingham.ac.uk/gravitational-waves

Astronomy in the City returns 9 March

birmingham.ac.uk/astro-in-the-city facebook.com/UoBobservatory • @UoBObservatory

The gravitational universe Christopher Berry • @cplberry

Image: Daniel Berehulak/ Getty Images

Gravitation is universal.

Objects move in straight lines.

Relativity

Space and time are linked.

Nothing can travel faster than the speed of light.

Image: BBC

Space-time

Space tells matter how to move. Matter tells space how to curve.

Image: WGBH Boston

General relativity

Mass

What does general relativity tell us?

Image: NASA, ESO

Karl Schwarzschild found the first black hole solution

The centre of our galaxy

How do you observe the dark side of the Universe?

Accelerating masses create gravitational waves, ripples in space-time

Credit: Swinburne Astronomy Productions

Stretch and squash

Gravity is a universal force, the dominant force in astrophysics

It is described by the curvature of spacetime in **general relativity**

Black holes are important astrophysical objects Gravitational waves are a new means of doing astronomy

We have detected gravitational waves!

losc.ligo.org/events/GW150914/

Catching the gravitational wave Conor Mow-Lowry

Michelson interferometer Output

Laser

1

Beamsplitter

Test

How to catch the wave

Start with the frequency of light as a clock
 Make relative measurements (only changes!)
 Enhance the signal optically
 Average over many atoms in the mirrors
 Create a very quiet place for the test masses
 Then... wait for the perfect wave!

LIGO was only possible after **decades of work** by **hundreds of scientists** around the world!

Image: LIGO Laboratory

0.0 Information in a gravitational wave Walter Del Pozzo hifted) Strain (10⁻² 0.5 0.0 -0.5 -1.0 **LIGO Livingston Data** 0.30 0.35 0.40 0.4 Image: LIGO Time (sec)

Final black hole

Image: LVC

Multiple detectors can localise the source in the sky

Image: Gravity Probe B

 $G_{\mu\nu}$

How do we know general relativity is correct?

 $\frac{8\pi G}{c^4}$ $T_{\mu
u}$

Image: Orion Jones

Testing the wave

These black holes and astrophysics Will M. Farr • @farrwill

Image: NASA, JPL-Caltech

Weak stellar winds Low metallicity

Image: NASA, C. Reed

Living as a binary

Image: Postnov & Yungelson (2014)

Assembling a binary

Image: J.-C. Cuillandre/G. Anselmi/Hawaiian Starlight

We will see lots!

Image: LVC

The future

Alberto Sesana

LIGO is just one window

Image: Ira Thorpe

EPTA/LEAP (Europe)

PPTA (Australia)

Image: David Champion

NANOGrav (North America)

PPTA (Australi

FPTA/LEAP (Europe)

(North America)

lmage: David Champion

evolving Laser Interferometer Space Antenna

LISA Pathfinder takes off!

00:01

birmingham.ac.uk/gravitational-waves/

LIGO made the first observation of a binary **black hole** merger The future is bright for **gravitational wave** astronomy

Thank You

Coming Up: Astronomy in the City - Wednesday 9 March 2016 Visit birmingham.ac.uk/astro-in-the-city for more information

birmingham.ac.uk/gravitational-waves

