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Abstract

These notes describe the notion of escape speed, which is the topic of a 15-minute lecture
given on July 7th at the University of Birmingham.

From a simple experiment such as throwing a pen in the air, one can see that the fastest an object
is launched, the higher it goes up before falling back on the floor. In fact, we will show in this
lecture that it is possible to launch an object so fast that it escapes the gravitational attraction of the
Earth and never comes back towards it. This leads to the concept of escape speed, which is defined
as follows:

The escape speed is the minimum speed needed for an object to escape the gravitational attrac-
tion of a planet.

The configuration considered here is illustrated in Fig. 1, which represents an object of mass mo

being launched from the surface of a planet of mass Mp. The trajectory of the object is represented
by the red arrow that starts at an initial distance Ri from the center of the planet where the initial
speed is vi. After reaching a final distance Rf where the speed is vf = 0, the object falls back down
towards the planet.

To derive a formula for the escape speed, we will use the law of conservation of energy. In this
situation, the energy is given by

E = mo
v2

2
− GMpmo

R
, (1)

Fig. 1.— Sketch illustrating the configuration considered to derive a formula for the escape speed using the
law of energy conservation.
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which is the sum of kinetic and potential energy.1 Here, R and v are the distance and speed of the
object at any location on its trajectory.

Conservation of energy implies Ei = Ef , meaning that the energy is the same at the initial point
of the trajectory where the object is launched and at the final point where it has reached the largest
distance from the planet. Using equation (1) with the values of both distance and speed defined
above, this equality leads to

mo
v2i
2
− GMpmo

Ri

= mo
v2f
2
− GMpmo

Rf

. (2)

The next step is to specify the values of the distance and speed at the initial and final points.
The initial speed is equal to the escape speed vi = vesc that we wish to solve for, while the initial
distance is equal to the radius of the planet Ri = Rp. At the final point, the speed is vf = 0 while
the final radius is set to Rf = +∞ as the object escapes the gravitational attraction of the planet.
Equation (2) then becomes

mo
v2esc
2
− GMpmo

Rp

= 0,

which after some algebra yields the following formula for the escape speed:

vesc =

√
2GMp

Rp

. (3)

For the Earth, the planet mass is Mp = ME = 5.97 × 1024 kg and its radius Rp = RE =
6.37 × 106m. Using the value of the gravitational constant G = 6.67 × 10−11m3 kg−1 s−2, this
leads to a value the escape speed for the Earth of vesc = 11.2 km s−1, which is larger than that of
a bullet by about a factor of 10. It is the speed at which one needs to launch an object to make it
escape the Earth’s gravity.

Equation (3) implies that decreasing the radius of a planet but keeping its mass fixed results in
an increase of the escape speed. If the radius becomes sufficiently small, the escape speed becomes
equal to the speed of light c, implying that nothing, not even light, can escape from the gravitational
attraction of the planet. Such a compact planet is called a black hole.

Setting the escape speed to vesc = c in equation (3) allows us to determine the radius of a black
hole, called the Scharzschild radius, which is given by

RS =
2GMp

c2
. (4)

1One can show that this so-called “mechanical” energy is conserved by computing its time derivative, which yields:

dE

dt
= mov

dv

dt
+

GMpmo

R2

dR

dt
= mov

(
dv

dt
+

GMp

R2
.

)
= 0

Here, we have used v = dR/dt and the fact that the acceleration of the object times its mass is equal to the gravita-
tional force, that is mo dv/dt = −GMpmo/R

2. As expected, dE/dt = 0, which implies that energy is conserved.
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For the Earth, using Mp = ME and the value of the speed of light c = 2.99 × 108ms−1 leads to
RS = 9mm, meaning that its mass needs to be compressed inside about the size of sugar cube to
become a black hole!

Note that a physically sound derivation of the Schwarschild radius requires solving Einstein’s
equation of general relativity. This calculation was first carried out by Karl Schwarschild, who
gave his name to this radius. The method we used above to obtain equation (4) is therefore only
approximate but nevertheless leads to the correct formula. Remarkably, a similar argumentation
was used by John Michell to introduce the concept of black hole more than a hundred years before
the formulation of the theory of general relativity. Links to these two papers can be found in the
bibliography below.
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